Characterization of PSII photochemistry in salt-adapted cells of cyanobacterium \textit{Spirulina platensis}

CONGMING LU and AVIGAD VONSHAK*

Microalgal Biotechnology Laboratory, the Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boker Campus 84990, Israel

Received 8 April 1998; accepted 4 October 1998

SUMMARY

The changes in pigment composition, photosynthesis and PSII photochemistry were investigated in cells of \textit{Spirulina platensis} adapted to salt stress (\(<0.75\) M NaCl). A decrease in the phycocyanine/chlorophyll and no significant change in the carotenoid/chlorophyll ratio were observed in salt-adapted cells. Salt stress inhibited the apparent quantum efficiency of photosynthesis and PSII activity while stimulating PSI activity and dark respiration significantly. Salt stress also resulted in a decrease in overall activity of the electron transport chain, which could not be restored by diphenylcarbazide, an artificial electron donor to the reaction centres of PSI. Measurements of the polyphasic fluorescence rise in fluorescence transients including phases O, J, I and P showed that salt stress had no effect on the fluorescence yield at phase O but decreased the fluorescence yield at phases J, I and P. Analyses of the JIP test developed from the polyphasic rise of fluorescence transients showed that salt stress led to a decrease in both the maximum quantum efficiency of PSII photochemistry and the maximum quantum efficiency of electron transport beyond the primary quinone electron acceptor. However, salt stress induced no significant changes in the probability of transporting an electron beyond Q\(_A\), the trapping flux per PSII reaction centre, or the electron transport flux per PSII reaction centre. A theoretical analysis of fluorescence parameters indicated a decrease in the rate constant of excitation energy trapping by PSII reaction centres. In addition, salt stress induced an increase in the complementary area above the fluorescence induction curve in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, suggesting an increase in the proportion of closed PSII reaction centres in salt-adapted cells. Based on these results, it is suggested that modifications in PSII photochemistry in salt-adapted \textit{Spirulina} cells maintained a high conversion efficiency of excitation energy, such that no significant change was observed in either the trapping flux or the electron transport flux per PSII reaction centre.

Key words: cyanobacterium (\textit{Spirulina platensis}), photosystem II (PSII) photochemistry, photosynthesis, polyphasic chlorophyll fluorescence, salt adaptation.

Abbreviations: ETo, electron transport flux beyond Q\(_A\); F\(_o\), F\(_m\), F\(_v\), minimum, maximum, and variable fluorescence in the dark-adapted state; PPFD, photosynthetic photon flux density; TRo, energy trapping flux by PSI reaction centre.

INTRODUCTION

The decline in productivity observed in many plants subjected to excessive salinity is often associated with a decrease in their photosynthetic capacity. It was reported earlier that one of the primary sites of damage to the photosynthetic apparatus by environmental stress is located in PSII (Baker, 1991). Data concerning the effect of salinity on the photochemical efficiency of PSII are limited and conflicting. Some studies have shown that, in higher plants, salt stress inhibits PSII activity (Bongi & Loreto, 1989; Mishra \textit{et al.}, 1991; Masojidek & Hall, 1992; Belkhodja \textit{et al.}, 1994; Everard \textit{et al.}, 1994), whereas others have indicated that salt stress has no effect on PSII (Robinson \textit{et al.}, 1983; Brugnoli & Björkman, 1992; Morales \textit{et al.}, 1992) or even increases PSII activity (Smillie & Nott, 1982). In cyanobacteria, the effect of salt stress of PSII has not been studied as intensively as in higher plants. Jeanjean \textit{et al.} (1993) reported that no significant changes were noticed in the activity of PSII electron
transport in *Synechocystis* sp. PCC 6803 adapted to 0.55 M NaCl. However, in cells adapted to a higher level of salinity (0.684 M), PSII activity decreased (Schubert & Hagemann, 1990). Furthermore, it has not been shown how salt stress affects the primary photochemistry of PSII, or which components of PSII are modified by salt stress either in higher plants or in algae.

Spirulina platensis, a filamentous cyanobacterium, has been isolated from a wide range of habitats, varying from low to high ionic strength, in salty and alkaline waters (Ciferri, 1983). In a previous work, Vonshak et al., (1988) demonstrated that *S. platensis* is capable of adapting to high concentrations of NaCl and that this adaptation is associated with an increase in respiratory activity. Such an increase in respiration associated with salt tolerance was also observed in a marine *Spirulina* strain (Gabbay-Azaria et al., 1992). The effect of salinity stress on salt-adapted cells at steady state was studied with respect to photosynthesis (Schubert & Hagemann, 1990), enzyme activity (Hagemann et al., 1989), and protein synthesis (Hagemann et al., 1990). Less information is available on changes in the primary processes of photosynthesis and possible sites of damage to PSII in cyanobacteria after the cells become adapted to high salinity.

Recently, it has been shown that transients in chlorophyll (Chl) a fluorescence display a more complex polyphasic rise when fluorescence induction is measured with a strong actinic illumination (Neubauer & Schreiber, 1987; Schreiber & Neubauer, 1987; Strasser et al., 1995). The polyphasic rise of these transients reflects the filling up of the electron acceptor side of PSII, the primary (Q$_{a}$) and secondary (Q$_{b}$) quinone electron acceptors, and the plastoquinone (PQ) pool with electrons from the donor side of PSII (Srivastava et al., 1995; Strasser et al., 1995). Measurements such as these have provided an opportunity to determine whether the primary photochemistry of PSII is modified by salt stress and to identify the possible sites of damage to PSII.

In this study we have examined mainly the changes that adaptation to salinity caused in the primary photochemistry of PSII and in photosynthetic electron transport in cells of *S. platensis*.

Materials and Methods

Conditions of growth

Spirulina platensis M$_{2}$ was grown at 35°C in air enriched with 1% (v/v) CO$_{2}$ in Zarouk’s medium supplemented with 0.2 M sodium bicarbonate (Vonshak et al., 1982). Illumination of 50 μmol quanta m$^{-2}$ s$^{-1}$ was provided by fluorescence lamps (GRO-Lux, Sylvania, Germany).

Salt adaptation

To obtain a salt-adapted culture, exponentially growing cells were diluted and grown for at least 14 d in Zarouk’s medium containing different concentrations of NaCl (0.1, 0.35, and 0.75 M).

Measurement of pigments

Chlorophyll (Chl) a was determined according to Bennet & Bogorad (1973). The absorbance of e-phyocyanin was measured spectrophotometrically at 620 nm and its concentration calculated from the specific absorption coefficient E1%$_{620}$ = 73 (Boussiba & Richmond, 1979). For the determination of carotenoids, samples were harvested by centrifugation, and the pellet was saponified by suspension in 30% (w/v) methanol containing 5% (w/v) KOH. The remaining pellet was neutralized by addition of 70% (w/v) acetic acid, after which carotenoids were extracted by addition of pure dimethylsulphoxide and maintained at 70°C for 5 min. The absorbance of the supernatant was measured at 490 nm and the concentration of carotenoids was calculated using the specific absorption coefficient E1%$_{490}$ = 2200 (Davies, 1976).

Measurement of photosynthetic quantum efficiency and dark respiration

Evolution of O$_{2}$ was measured at 35°C using a Clarke-type electrode. Cells were harvested and resuspended in fresh medium containing the NaCl concentration to which cells were adapted. Light-response curves of photosynthesis (P-I curve) were obtained for cells by measuring the rate of O$_{2}$ evolution at different photosynthetic photon flux densities (PPFDs). Illumination was provided by a slide projector and a Halogen lamp (100 W), adjusting the lamp to cuvette distance or by inserting different neutral density filters into the optical path. The slope of the light-response curve of photosynthesis is a reflection of the apparent quantum efficiency of photosynthesis (φ) and was calculated by regression, using the rates at 8–10 PPFDs in the range of 10–120 μmol quanta m$^{-2}$ s$^{-1}$. The strictly linear region of the curves was determined on the basis of the maximum r2 (≥0.95). Dark respiration (R$_{d}$) was estimated from O$_{2}$ uptake by cells incubated in the dark.

Assay of electron transport activities

After the cells were permeabilized by treatment in the dark with 0.9 mM of p-benzoquinone (pBQ), as previously described (Satoh et al., 1992), PSII activity was determined by O$_{2}$ evolution with 0.9 mM (pBQ) as an electron acceptor. Overall electron transport chain activity and PSI activity were
assayed in the same cell preparation. Overall electron transport activity, from water to methyl viologen (MV), was determined from the rate of O₂ uptake following addition of 0.1 mM MV, which is reduced by PSI. Electron transport activity in the absence of the water-splitting complex was measured by incorporating 0.50 mM diphenylcarbazide (DPC) as an electron donor in the assay mixture. PSI activity was measured as O₂ uptake in the presence of 0.1 mM 2,6-dichlorophenol indophenol (DCPIP), 0.1 mM MV, 5 mM NaN₃ as an inhibitor of respiration, 10 μM 3-(3, 4-dichlorophenyl)-1, 1-dimethyleurea (DCMU) as an inhibitor of PSI, 5 mM ascorbate and 1 mM potassium cyanide as an inhibitor of superoxide dismutase.

According to Robinson et al., (1982), intact trichomes of S. platensis are permeable to the acceptors and donors used in our measurements.

Measurement of the polyphasic chlorophyll a fluorescence transients

The polyphasic rise in fluorescence transients due to Chl a were measured by a Plant Efficiency Analyser (PEA, Hansatech Instruments Ltd., King’s Lynn, Norfolk, UK) with an actinic light of c. 3000 μmol quanta m⁻² s⁻³ (Strasser et al., 1995). Illumination was by an array of six high-intensity light-emitting diodes (with a maximum of 650 nm), which were focused on the sample surface to provide homogeneous illumination over an area 4 mm in diameter. The fluorescence signals were received by a high-performance Pin photodiode detector associated with an amplifier circuit. The detector responded maximally to the longer-wavelength fluorescence signal while blocking reflected, shorter-wavelength light from light-emitting-diodes. All fluorescence transients were recorded within a time scan from 10 μs to 1 s with a data acquisition rate of 10³ readings per second for the first 2 ms and of 10⁵ readings per second after 2 ms.

All samples were dark-adapted for 10 min before measurement of fluorescence transients.

The JIP test

All of the oxygenic photosynthetic materials so far investigated exhibit a polyphasic rise in fluorescence transients during the first second of illumination. These phases are labelled as O, J, I, P (Strasser et al., 1995). To record a complete fluorescence transient showing all these phases the sampling rate should be sufficiently high to enable the visualization of intermediate steps J and I between the initial (F₀) and the maximal (Fₘ) fluorescence on a logarithmic time scale (Srivasta et al., 1995; Strasser et al., 1995).

In this study, our results demonstrate that the S. platensis cells show a typical polyphasic rise (O-J-I-P) of fluorescence transients (see curve a in Fig. 2a) similar to that of higher plants (Strasser et al., 1995). Strasser and Strasser (1995) developed the JIP test, from which formulae for the calculation of the energy fluxes and flux ratios have been derived, and which is based on the theory of energy fluxes in biomembranes in a photosynthetic apparatus (Strasser, 1978; Strasser, 1981) in combination with data from measurements of the polyphasic rise of fluorescence transients.

According to the model of energy fluxes in this test (Fig. 1), photons absorbed by the antennae pigments are referred to as absorption flux (ABS). Part of this excitation energy is dissipated as fluorescence, but most is transferred as the trapping flux (TR) to the RC. In the RCs, the excitation energy is converted to redox energy by reducing Q₁ to Q⁻ which is then reoxidized to Q₁, thus leading to an electron transport flux (ET) that maintains the metabolic reactions of the photosynthetic apparatus. We can therefore use the JIP test to evaluate the modifications in PSII photochemistry in salt-adapted cells, by measuring the polyphasic rise of fluorescence transients. For a detailed derivation of the formulae for the various energy fluxes and for the flux ratios in the JIP test, see Strasser and Strasser (1995) and Krüger et al. (1997).

The JIP test was originally developed for higher plants. It is based on the relative variable fluorescence, which is purely geometrical, and does not correspond to any theory about the origin of the fluorescence emission. It is independent of F₀ (Strasser, 1996). Although the phycobilisome and PSI are responsible for a large F₀ in cyanobacteria, they do not contribute to the variable fluorescence (Fock & Mohanty, 1986). The relatively high variable fluorescence Fᵥ/Fₘ ratio (0.7) obtained in our control culture suggests that the influence of the phycobilisome and PSI on F₀ and the effect of dark respiration on Fₘ are relatively small. Moreover, the mathematical simulation of the OJIP transient, using the model of PSII from which the JIP test is derived and published rate constants, gives a satisfactory fit of the OJIP transient (Stirbet et al., 1995). In addition, the cyanobacterium S. platensis, like higher plants, shows a typical variable fluorescence transient and the main effect of salinity was on Fₘ rather than on Fᵥ. Furthermore, the results obtained from the analyses of fluorescence-quenching under steady-state photosynthesis were comparable with these obtained from the analysis of the JIP test after Spirulina cells were subjected to salinity shock (Lu & Vonsksh, unpublished). In fact, the polyphasic rise of fluorescence has been used successfully in studies of ozone stress (Meinander et al., 1996), high-temperature stress (Srivastava & Strasser, 1996), light stress (Krüger et al., 1997) and in the characterization of herbicide-resistant Δ₁ mutants (Srivastava et al., 1995). We therefore believe that the JIP test can be used to evaluate PSII photochemistry in the cyanobacterium S. platensis.
RESULTS

Pigment composition, photosynthetic quantum efficiency, and dark respiration

Changes in the relative pigment composition in salt-adapted cells are shown in Table 1. The ratio of phycocyanin/Chl decreased significantly with increase in salt concentration, whereas the ratio of carotenoid/Chl remained relatively constant in salt-adapted cells.

The apparent quantum efficiency of photosynthesis (α) decreased progressively with increasing salt concentration (Table 1). For example, a 22% decrease in salt concentration, whereas the ratio of carotenoid/Chl decreased significantly with increase in salt concentration, whereas the ratio of carotenoid/Chl remained relatively constant in salt-adapted cells.

Table 1. Ratios of carotenoid/Chl a and c-phycocyanin/Chl a, the apparent quantum efficiency of photosynthesis (α, μmol O_2 [mg chl h μmol quantum m$^{-2}$s$^{-1}$]$^{-1}$) and the rate of respiration in the dark (R_o, μmol O_2 mg$^{-1}$ chl h$^{-1}$) in cells of Spirulina platensis adapted to different concentrations of NaCl

<table>
<thead>
<tr>
<th>NaCl concentration (M)</th>
<th>Carotenoid/Chl a</th>
<th>c-Phycocyanin/Chl a</th>
<th>α</th>
<th>R_o</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.214 ± 0.004 a (100)</td>
<td>5.14 ± 0.025 a (100)</td>
<td>3.09 ± 0.70 a (100)</td>
<td>25.3 ± 3.7 a (100)</td>
</tr>
<tr>
<td>0.1</td>
<td>0.222 ± 0.013 a (104)</td>
<td>5.05 ± 0.035 a (98)</td>
<td>2.94 ± 0.77 ab (95)</td>
<td>27.2 ± 4.2 b (108)</td>
</tr>
<tr>
<td>0.35</td>
<td>0.222 ± 0.012 a (104)</td>
<td>4.05 ± 0.035 b (79)</td>
<td>2.64 ± 0.52 b (92)</td>
<td>31.4 ± 5.0 c (124)</td>
</tr>
<tr>
<td>0.75</td>
<td>0.204 ± 0.008 a (95)</td>
<td>3.13 ± 0.049 c (61)</td>
<td>2.41 ± 0.06 c (78)</td>
<td>38.5 ± 4.7 d (122)</td>
</tr>
</tbody>
</table>

Numbers in parentheses are percentages of the control value. Values are means ± SE from 3–5 different experiments; different lower-case letters indicate values significantly different at $P = 0.05$.

Table 2. Electron transport activities (μmol O_2 h$^{-1}$ mg$^{-1}$ chl) of photosynthesis in cells of Spirulina platensis adapted to different concentrations of NaCl

<table>
<thead>
<tr>
<th>Electron transport activity</th>
<th>NaCl concentration (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>PSII (H$_2$O→pBQ)</td>
<td>574.0 ± 40.1 a (100)</td>
</tr>
<tr>
<td>PSII (DCPIP→MV)</td>
<td>719.8 ± 46.6 a (100)</td>
</tr>
<tr>
<td>Whole-chain (H$_2$O→MV)</td>
<td>280.9 ± 23.3 a (100)</td>
</tr>
<tr>
<td>Whole-chain (DCPIP→MV)</td>
<td>278.2 ± 27.7 a (100)</td>
</tr>
</tbody>
</table>

Values are means ± SE of 3–4 independent experiments. Numbers in parentheses are percentages of the control value.
Photosynthetic electron transport

In salt-adapted cells of *S. platensis*, a decrease in PSII activity (H₂O→pBQ) was observed (Table 2). PSI activity (DCPIP→MV) was, however, markedly stimulated, increasing by 85, 122 and 84% at 0.1, 0.35 and 0.75 M NaCl, respectively. In an attempt to locate the site of induction of these changes in PSII, the activities of the electron transport were measured both in the presence and absence of DPC, which is known to donate electrons to PSII reaction centres, thereby bypassing the oxidizing side of PSII (Izawa, 1980). The response of activity was identical, both in the absence (H₂O→MV) and in the presence of DPC (DPC→MV) (Table 2). This suggests that the changes in PSII induced by salt stress were most likely to be located in the reaction centres themselves rather than in the oxidizing side of PSII.

Relative rate of reduction of the primary quinone electron acceptor (Q₀) and relative variable fluorescence at phases J and I in polyphasic fluorescence transients

Cells of *S. platensis* exhibit a typical polyphasic rise of fluorescence transients including phases O, J, I, and P (Fig. 2a, curve a). The initial Chl fluorescence at level O (F₀) reflects the minimal fluorescence yield when all molecules of Q₀ are in the oxidized state. Level P corresponds to the situation in which all molecules of Q₀ are in the reduced state. Steps J and I occur between the more commonly observed steps O and P. The transition from phase O to phase J is controlled by photochemical charge separation (photochemical phase), leading to the reduction of Q₀ to Q₀⁻ while appearance of phases I and P is limited by dark reactions (Neubauer & Schreiber, 1987; Schreiber & Neubauer, 1987; Strasser et al., 1995). Polyphasic Chl a fluorescence transients thus provide information on the primary photochemistry of PSII.

The polyphasic Chl a fluorescence transients were followed in salt-adapted cells. In order to clarify the difference between control cells and salt-adapted cells, Figure 2a shows only the polyphasic rise of Chl a fluorescence transients determined from control and from cells adapted to 0.75 M NaCl. It seems that the minimal fluorescence level (O) did not change significantly with increase in salt concentration, but the fluorescence yield at phases J, I and P declined markedly (Fig. 2a).

In order to characterize further the polyphasic rise of fluorescence in salt-adapted cells, the transients were normalized on the basis of variable fluorescence, so that the polyphasic variable fluorescence transients were visualized. The relative variable fluorescence at any given time t is defined as $V_t = (F_t - F_o)/(F_m - F_o)$. According to the concept of Duysens and Sweers (1963), where Q_A in open reaction centres acts as a quencher, and the energy flux theory (Strasser, 1978), the empirical expression of the relative variable fluorescence in a chlorophyll variable fluorescence transient (V_t) can be considered as a function of the fraction of the closed reaction centres of PSII or as the fraction of reduced Q_A. Thus, the variation of V_t at a given time (V_t at the beginning of the variable fluorescence transient (theoretically at time zero), expressed as dV/dt_o, is...
the relative rate of reduction of Q_A, and also represents the relative rate of primary photochemistry (Strasser et al., 1995). The fraction of the closed reaction centres of PSII at phase f and I are represented by V_f and V_I, respectively. The changes in V_f, V_I, and dV/dt in salt-adapted cells are given in Fig. 2b. An increase in V_f, V_I, and dV/dt was observed in salt-adapted cells, suggesting that salt stress induced modifications in PSII photochemistry.

Fluorescence parameters determined from the JIP test

In order to investigate the effect of salt stress on electron transport at the acceptor side of PSII, we examined changes in the probability of electron transfer beyond Q_A (Ψ_m). The results show that no significant change in Ψ_m was observed in salt-adapted cells (Table 3), indicating that salt stress had no effect on the acceptor side of PSII.

We also examined changes in the maximum yield of excitation energy trapping by PSII, Ψ_m, expressed as $\text{TRo/ABS} = F_m/F_m^0$, as derived by Havaux et al. (1991), and the quantum yield of electron transport beyond Q_A (Ψ_m). As the salt concentration increased, Ψ_m and Ψ_m decreased progressively (Table 3).

The conversion efficiency of excitation energy in salt-adapted cells was further evaluated by studying the trapping flux (TR) and the electron transport flux (ET) per PSII reaction centre (RC), i.e. TRo/RC and ETO/RC. No significant changes were observed in either TRo/RC or ETO/RC occurred in salt-adapted cells (Table 3).

These results clearly indicate that salt stress resulted in modifications in PSII photochemistry. Whether the photochemical rate constant (k_p) was also modified by salt stress is unclear. According to Havaux et al. (1991) and Krüger et al. (1997),

$$(1/F_m) - (1/F_m^0) = k_{2p}/(Q_1^0 \times k_{2p}),$$

where J is the light absorption flux in PSII, k_{2p} is the rate constant of energy trapping by PSII reaction centres and k_{2p} is the rate constant of fluorescence emission from PSII. The value of k_{2p} is considered very small and constant over a wide range of physiological conditions (Butler & Kitajima, 1975), while that of J can be changed by environmental stress. Salt stress resulted in a decrease in the ratio of phycocyanin/chl (Table 1). This would possibly decrease the light absorption flux (J) in PSII and increase the value of the fluorescence parameter, $(1/F_m) - (1/F_m^0)$. However, a decrease in $(1/F_m) - (1/F_m^0)$ was seen in salt-adapted cells (Table 3), suggesting that k_{2p} decreases. Moreover, because of the decrease in J in salt-adapted cells, it is most likely that the decrease of k_{2p} is even more pronounced than that in the values of $(1/F_m) - (1/F_m^0)$ shown in Table 3.
reoxidation of Q fraction of the closed PSII reaction centres when no V difference in d occurs (Strasser & Strasser, 1995). In consequence, the decrease in the constant of energy transport by PSII reaction centres in salt-adapted cells, derived from the fluorescence parameter \((1/F_o - 1/F_m) \) (Table 3), also suggests that the main effect induced by salt stress lies in the PSII reaction centres. An increase in the complementary area above the fluorescence induction curve in salt-adapted cells exposed to DCMU clearly demonstrated that salt stress resulted in an increase in the proportion of closed PSII reaction centres. This disturbance in PSII reaction centres resulted in a decrease in \(P_o \) that led to a decrease in the yield of electron transport beyond \(Q_A \) \((\Psi_o) \). This could be inferred from the fact that \(\Psi_o \) is the product of \(P_o \) and \(\Psi_w \) (Strasser & Strasser, 1995) and no significant changes in \(\Psi_w \) was observed in salt-adapted cells.

As shown in Table 3, there was also no significant decrease in the probability of electron transport beyond \(Q_A \) \((\Psi_o) \), indicating that electron transport at the acceptor side was not the main site of damage induced by salt stress. It therefore appears most likely that salt stress causes damage to the PSII reaction centre itself. The decrease in the rate of electron transport by PSII reaction centres in salt-adapted cells, derived from the fluorescence parameter \((1/F_o - 1/F_m) \) (Table 3), also suggests that the main effect induced by salt stress lies in the PSII reaction centres. An increase in the complementary area above the fluorescence induction curve in salt-adapted cells exposed to DCMU clearly demonstrated that salt stress resulted in an increase in the proportion of closed PSII reaction centres. This disturbance in PSII reaction centres resulted in a decrease in \(P_o \) that led to a decrease in the yield of electron transport beyond \(Q_A \) \((\Psi_o) \). This could be inferred from the fact that \(\Psi_o \) is the product of \(P_o \) and \(\Psi_w \) (Strasser & Strasser, 1995) and no significant changes in \(\Psi_w \) was observed in salt-adapted cells.

An increase in the relative rate of \(Q_A \) reduction \((dV/dt) \) was observed in salt-adapted cells. Since \(dV/dt \) is the difference between the maximum rate of reduction of \(Q_A \) \((TRo/RC) \) and that of \(Q_A^{-} \) reoxidation, and no significant change was observed in \(TRo/RC \), the increased value of \(dV/dt \) was obviously due to a decrease in the rate of \(Q_A^{-} \) reoxidation. This would have resulted from the increase in the proportion of closed PSII reaction centres. It has been shown that relative variable fluorescence is proportional to the fraction of closed PSII reaction centres or to the fraction of reduced \(Q_A \) when energy transfer between PSII units is ignored. The increase in \(V_i \) and \(V_f \) in salt-adapted cells (Fig. 2) might therefore indicate an increase in the proportion of closed PSII reaction centres and, in consequence, in the proportion of reduced \(Q_A \) at phases \(I \) and \(J \), respectively.

The pronounced increase observed in the respiratory rate in salt-adapted cells could increase electron flux in the electron transport chain and thereby affect PSII, since the respiratory electron transport chain is often coupled with the photosynthetic electron transport chain in cyanobacteria. However, the higher excitation pressure that this would place on PSII could be overcome by a decrease in the absorption cross section of PSII (as reflected by a decrease in the ratio of phycocyanin/Chl), a decrease in the rate constant of excitation-energy trapping by PSII reaction centres and by increased PSI activity. This would result in
a decrease in energy transfer between phycobilisomes and PSII and shift the distribution of excitation energy in favour of PSI. Enhancement in PSI activity should increase cyclic electron transport. Several reports have shown that cyclic electron flow increases under salinity stress (Jeanjean et al., 1993; Hibino et al., 1996). Thus, it seems that an increase in PSI activity in salt-adapted cells could protect PSII from excessive excitation energy under salt stress. On the other hand, the increases in PSI activity and in the respiratory rate of salt-adapted cells might provide more energy for the synthesis of organic osmolytes and for the extrusion of Na+ in cells to maintain osmotic balance.

Based on the findings presented in this paper, the adaptation of PSII apparatus to salt stress in Spirulina cells appears to involve a decrease in the absorption cross section (decreased ratio of phycocyanin/Chl) and in modifications to PSII photochemistry. An increase in PSI activity parallels the decrease in the maximum quantum efficiency of PSII photochemistry and might regulate excitation-energy equilibration to maintain balanced electron transport in salt-adapted Spirulina cells. Through an increase in the proportion of closed PSI reaction centres, the PSII apparatus was thus protected from further excitation energy excitation. On the other hand, the high conversion efficiency of excitation energy was maintained, as reflected by no change in T'Ro/RC or ETo/RC under salt stress.

REFERENCES

