Mycorrhizas in integrated systems from genes to plant development

Proceedings of the fourth European Symposium on Mycorrhizas

Final report

European Commission
Directorate-General XII
Science, Research and Development
In vitro Interaction between the Saprophytic Fungus Aspergillus niger and the Arbuscular Mycorrhizal Fungus Glomus mosseae

C. B. Mc Allister¹,², I. Garcia–Romera¹, J. Martin¹, A. Godeas² and J. A. Ocampo³

¹Dpto. de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidin, CSIC, Prof. Albareada 1, E–18008 Granada, Spain.
²Dpto. Ciencias Biológicas, 4 II Pabellon, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

Summary. – Percentage of germination and length of the mycelium of Glomus mosseae spores cultivated in water–agar decreased significantly in the presence of Aspergillus niger. This decrease was independent on the change in the pH of the medium. Soluble and volatile compounds produced by A. niger are involved in this effect. The decrease caused by volatile compounds was significantly greater when A. niger was grown on malt extract agar. The possible mechanisms of in vitro interactions between A. niger and G. mosseae are discussed.

Keywords: Aspergillus niger, Glomus mosseae, arbuscular mycorrhiza, saprophytic fungi

Introduction

The activity of rhizosphere inhabiting microorganisms exerts a significant effect upon arbuscular mycorrhizas (AM). Many studies have been focussed on the interactions between AM and pathogenic fungi, but information about the interactions of mycorrhizas and saprophytic fungi is scarce (1). Saprophytic fungi live in the rhizosphere and rhizoplane of plants where they get a great nutritional benefit from organic compounds released from living roots, or from sloughed cells. Their activity and metabolism may result in the production of substances that promote or inhibit the growth of other rhizosphere microorganisms. The saprophyte Aspergillus niger, a widespread fungus in the rhizosphere of vegetable crops, is known to produce lytic enzymes (5) and antibiotics (6).

The purpose of this study was to determine the relationships between Glomus mosseae and A. niger, and to examine some of the possible mechanisms involved.

Materials and Methods

Effect of A. niger on the development of G. mosseae. Aspergillus niger was isolated by the particle washing method (8), using a multichamber washing apparatus. The fungus was cultivated in tubes containing potato dextrose agar (PDA) at 4°C as stock culture. Sporocarps of G. mosseae (Nicol. & Gerd.) Gerd. & Trappe were isolated by wet sieving the soil (4) from alfalfa pot cultures. Spores were excised from sporocarps. They were stored in water at 4°C and used within one month. Spores of G. mosseae were surface-sterilized as described by Mosse (7).

The effect of A. niger on the spore germination of G. mosseae was tested in four different experiments using 9-cm diameter plastic Petri dishes. In the first experiment the effect of A. niger was tested on 1 %, sterile water agar, with pH adjusted to 7.0. Five surface-sterilized spores per plate were placed near (1 cm) the edge of the Petri dish, and a thin streak of the saprophytic fungus was inoculated at least 7 cm away from them. In the second experiment 10 mM of MES was added to 1% water agar. Thus the pH of the medium was maintained at 7.0 during the experiment. The third experiment tested the effect of exudates from A. niger. Exudates were obtained by growing the saprophyte in PDA liquid medium. Two ml of these exudates were added to 10 ml of 1% water agar (pH 7.0) in a Petri dish. In the fourth experiment the effect of volatile compounds released by A. niger was tested in compartmentalized Petri dishes. In one side, five G. mosseae spores were placed near the edge of the plate, and the saprophytic fungus was inoculated in the other side. In an initial assay the dishes contained 1% water agar (pH 7.0) in both compartments. In a second assay the plates contained 1% water agar (pH 7.0) in one side and malt extract agar (MEA) medium, for A. niger, in the other.
Comparative Effects of Earthworm Casts, a Composted Municipal Refuse and a Soluble P Fertilizer on Yield and Arbuscular Mycorrhizal Infection of Glycine Max L.
M. J. Sáinz and M. T. Taboada .. 588

Effectivity of Indigenous Arbuscular Mycorrhizal Spore Populations from Contrasting Agricultural Management Regimes
E. P. Scott, W. R. Eason and J. Scullion .. 591

Agronomical Interest of Arbuscular Mycorrhizas: Comparative Field Growth of Myc+ and Myc− Peas
A. Trouvelo, P. Lovato and S. Gianinazzi .. 595

Arbuscular Mycorrhiza-Mediated Transformations of the P Pools in an Andisol
P. Vinuesa-Fleischmann, M. A. Negrín, M. C. Jaisme-Vega and J. M. Hernández-Moreno .. 599

The Role of Arbuscular Mycorrhiza in Soil Nutrient Management in China
Y. Zhu ... 603

Workshop 8: Interactions in the mycorrhizosphere

Mycorrhization Helper Bacteria: their Management in Forest Nurseries as an Aid to Controlled Mycorrhization
J. Garbaye and P. Klett .. 608

Soil Bacteria - a Component of Plant, Soil and Arbuscular Mycorrhizal Fungal Interactions
M. Vosátkova .. 613

Micronutrient Uptake by Bean Plants Growing in an Ultisolic Soil of the Humid Tropic as Affected by Mycorrhizas, Soil Microbiota and Rock Phosphate Interactions
M. Bermudez, R. Azcón, L. Castro and J. M. Barea 619

Cellular Interactions between Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Soil Bacteria
V. Biancotto, S. Perotto and P. Bonfante .. 623

Outplanting Performance, Mycorrhizal Development and Rhizosphere Microbial Populations of Pseudotsuga menziesii Seedlings Planted in a Degraded Site and Inoculated with Forest Soils Pretreated with Selective Biocides
C. Colinas, R. Molina, J. Trappe and D. Perry ... 627

Compatibility of Wild Type and Genetically Modified Rhizobium Strains with Two Glomus Species in Relation to Symbiotic Root Colonization and Development of Alfalfa Plants
E. Djonova, R. Azcón and J. M. Barea ... 630

Stimulation of Mycorrhization and Growth for Containerized Jack Pine Seedlings Inoculated with Laccaria bicolor and Pseudomonas fluorescens
J. Gagnon .. 634

Effect of Bacteria and Organic Matter of Microbial Origin on the Arbuscular Mycorrhiza of Glomus fasciculatum
M. Gryndler and M. Vosátka ... 638

Effects of Protozoa on Mycorrhizal and Non-Mycorrhizal Spruce Seedlings
G. Jentschke, M. Bonkowski, D. L. Godbold and S. Scheu 642

In vitro Interaction Between the Saprophytic Fungus Aspergillus niger and the Arbuscular Mycorrhizal Fungus Glomus mosseae

Ability of Three Phosphate-Solubilizing Rhizobacteria to Release Phosphorus from several Rock Phosphate Sources to Explain their Interaction with Mycorrhizal Plants
K. Nedialkova, M. Toro and J. M. Barea .. 649

XX