Acaulospora viridis, a new species in the Glomeromycetes from two mountain ranges in Andalucía (Spain)

Javier Palenzuela¹, Concepción Azcón-Aguilar¹, José-Miguel Barea¹, Gladstone Alves da Silva² and Fritz Oehl³*

¹ Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain
² Departamento de Micología, CCB, Universidade Federal de Pernambuco, Av. Prof. Nelson Chaves s/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
³ Agroscope, Federal Research Institute for Sustainability Sciences, Plant-Soil Interactions, Reckenholzstrasse 191, 8046 Zürich, Switzerland

With 14 figures and 1 table

Abstract: A new Acaulospora species was found in two adjacent mountains ranges in Andalucía (southern Spain), i.e. in Sierra Nevada National Park at 1270–3200 m asl around roots of Artemisia umbelliformis, Sorbus hybrida, Laserpitium longiradium among others, and in a shrubland and grassland at 1855–2028 m asl in the Sierra de Baza Natural Park. The fungus produced spores in single species cultures, using Sorghum vulgare or Trifolium pratense as bait plant. The new species was named A. viridis because of its greenish appearance under the dissecting and in the compound microscope. The spores have a smooth surface and are similar in size to several other Acaulospora species, such as A. koskei, A. laevis, A. capsicula, A. colliculosa and A. enteriana. However, the new species can easily be distinguished from all these fungi by the diagnostic staining of the middle wall in Melzer’s reagent. Phylogenetic analyses of sequences obtained from the ITS and partial LSU of the ribosomal genes confirm the new species in a clearly separate clade within the Acaulosporaceae.

Key words: arbuscular mycorrhizal fungi, biodiversity, Glomeromycetes, mountainous grasslands, phylogeny.

Introduction

Arbuscular mycorrhizal (AM) fungi belong to the Glomeromycota. They are widespread soil microorganisms able to establish mutualistic associations with most terrestrial plants, and to increase plant fitness and soil quality (Smith & Read 2008). Interest in the study of AM fungal diversity has been stimulated by the evidences about the essential roles played by these plant symbionts in ecosystems (Jeffries & Barea 2012).
One of the most studied families in the Glomeromycota are the Acaulosporaceae, currently belonging to the order Diversisporales (Oehl et al. 2011b). Members of this family have often been found in acidic soils and in mountainous grasslands environments (Castillo et al. 2006, Oehl et al. 2011a, 2011c, 2012, Veresoglou et al. 2013). In recent years, several species have been described in this family having spores with surface ornamentation (e.g. Błaszkowski 2012, Furrazola et al. 2013, Palenzuela et al. 2013), while new species with smooth surfaces (e.g. Schenck et al. 1984, Błaszkowski 1988, Błaszkowski 1995) have rarely been reported in the last decade (Velázquez et al. 2008).

We found a new Acaulospora species with smooth surfaces in seven sites of two adjacent mountains ranges in Andalucía (southern Spain), around roots of endangered plants species like Artemisia umbelliformis in the Sierra Nevada National Park, and in a Mediterranean shrubland and a mountainous grassland of Sierra de Baza Natural Park. This AM fungus was cultivated as single species cultures on Sorghum vulgare L. and subsequently analyzed morphologically and molecularly as described in Palenzuela et al. (2013). The paper presents its morphological features and its phylogenetic position based on ribosomal gene sequences.

Material and Methods

Study sites and study plants: Soil samples were taken from several locations at two adjacent mountains ranges in Andalucía, Sierra Nevada and Sierra de Baza, as indicated in Table 1.

Plant and soil sampling: Five intact plant individuals and the soil attached to the roots were collected at the study sites to establish AM fungal pot cultures. In addition, three samples of the soil surrounding the roots of each plant (0.5–1 kg) were taken with a shovel from a depth of 5–25 cm; they were thoroughly mixed to prepare a composite soil sample per individual plant. These samples were used to isolate AM fungal spores, and to determine soil pH (in a 1:2.5 w/v aqueous solution).

AM fungal pot cultures: To cultivate AM fungi, trap cultures were established with the collected native plants in 1500 mL pots (cylindric, 12 cm diam.) filled with the soil originally obtained from around the plant roots in the field. The pots were irrigated three times per week and fertilized every 4 weeks with Long-Aston nutrient solution (Hewitt 1966). The cultures were maintained in the greenhouse of the Estación Experimental del Zaidín (Granada) for more than three years. Single species cultures of the new fungus were first established with Sorghum vulgare L. in 350 mL pots as described in Palenzuela et al. (2010). Spores isolated from the trap cultures were stratified during 2 weeks at 4°C before inoculation.

Morphological analyses: AM fungal spores were separated from the soil samples by a wet sieving process (Sieverding 1991). The spore morphological characteristics and their subcellular structures were described from specimens mounted in: (i) polyvinyl alcohol-lactic acid-glycerol (PVLG; Koske & Tessier 1983); (ii) a mixture of PVLG and Melzer’s reagent (Brandrett et al. 1994); (iii) a mixture of lactic acid and water (1:1); (iv) Melzer’s reagent; and (v) water (Spain 1990). The spore structure terminology follows Palenzuela et al. (2011) and Oehl et al. (2011b, 2012) for species with acaulosporoid spore formation. Photographs (Figs 1–12) were taken with a high-definition digital camera (Nikon DS-Fi1) on a compound microscope (Nikon eclipse 50i) or with a Leica DFC 290 digital camera on a Leitz Laborlux S compound microscope using Leica Application Suite Version V 2.5.0 R1 software. Specimens mounted in PVLG and PVLG+Melzer’s reagent were deposited at the herbaria Z+ZT (ETH Zurich, Switzerland) and GDA-GDAC (University of Granada, Spain).

Molecular analyses: Five spores were isolated from a pot culture of a single fungal species culture originating from Artemisia umbelliformis. They were surface-sterilized with chloramine T (2%) and
Table 1. Geographical data, sampling time and selected soil characteristics at isolation sites of *Acaulospora viridis*.

<table>
<thead>
<tr>
<th>Plant species At mountain range</th>
<th>Study site</th>
<th>Altitude (m asl)</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Sampling time</th>
<th>Soil type</th>
<th>pH (H₂O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sierra Nevada</td>
<td>Artemisia umbelliformis Lam.</td>
<td>Goterón icefalls</td>
<td>2912</td>
<td>37°04'N</td>
<td>3°16'W</td>
<td>October 2006</td>
<td>Distric Regosol</td>
</tr>
<tr>
<td>Papaver lapeyrousianum Gutermann ex Greuter & Burdet</td>
<td>West side of the Mulhacen pick</td>
<td>3200</td>
<td>37°03'N</td>
<td>3°18'W</td>
<td>July 2007</td>
<td>Distric Regosol</td>
<td>6.6</td>
</tr>
<tr>
<td>Sorbus hybrida L.</td>
<td>Upper part of the San Juan ravine</td>
<td>1896</td>
<td>37°07'N</td>
<td>3°22'W</td>
<td>June 2007</td>
<td>Haplic Regosol</td>
<td>6.0</td>
</tr>
<tr>
<td>Sorbus torminalis (L.) Crantz</td>
<td>La Estrella path</td>
<td>1270</td>
<td>37°07'N</td>
<td>3°22'W</td>
<td>May 2007</td>
<td>Eutric Regosol</td>
<td>7.1</td>
</tr>
<tr>
<td>Laserpitium longiradiatum Boiss.</td>
<td>S. Jerónimo dehesa</td>
<td>1580</td>
<td>37°06'N</td>
<td>3°26'W</td>
<td>July 2007</td>
<td>Calcaric Cambisol</td>
<td>7.2</td>
</tr>
<tr>
<td>Erodium daucoides Boiss.</td>
<td>Prado Redondo ravine</td>
<td>2170</td>
<td>37°07'N</td>
<td>3°25'W</td>
<td>July 2008</td>
<td>Calcaric Cambisol</td>
<td>7.3</td>
</tr>
<tr>
<td>Sierra de Baza</td>
<td>Rosa pouzini Tratt.</td>
<td>Spiny mediterranean shrubland</td>
<td>1855</td>
<td>37°20'N</td>
<td>2°49'W</td>
<td>March 2005</td>
<td>Calcaric Regosol</td>
</tr>
<tr>
<td></td>
<td>Berberis hispanica Boiss. & Reut.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prunus ramburii Boiss.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crataegus monogyna Jacq.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Festuca iberica</td>
<td>Mountainous grassland "Prados del rey"</td>
<td>2028</td>
<td>37°22'N</td>
<td>2°51'W</td>
<td>March 2008</td>
<td>Chromic Cambisol</td>
</tr>
<tr>
<td></td>
<td>Trifolium repens subsp. nevadense (Boiss.) Coombe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Soil types were classified according to the World Reference Base for soil resources (FAO 2006).
streptomycin (0.02%) (Mosse 1962) and together crushed with a sterile disposable micropestle in 40 µL milli-Q water (Ferrol et al. 2004). PCRs of the crude extracts were obtained in an automated thermal cycler (Gene Amp PCR System 2400, Perkin-Elmer, Foster City, California) with a pureTaq Ready-To-Go PCR Bead (Amersham Biosciences Europe GmbH, Germany) following manufacturer’s instructions, with 0.4 µM concentration of each primer. A two-step PCR amplified the SSU end, ITS1, 5.8S, ITS2 and partial LSU rDNA fragment using the SSUmAf/LSUmAr and SSUmCf/LSUmBr primers consecutively (Krüger et al. 2009). PCR products were analyzed by electrophoresis in 1.2% agarose gels stained with Gel Red™ (Biotium Inc., Hayward, CA, U.S.A.) and viewed by UV illumination. The expected amplicons were purified using the GFX PCR DNA kit and Gel Band Purification Illustra, cloned into the PCR 2.1 vector (Invitrogen, Carlsbad, CA, USA), and transformed into One shot® TOP10 chemically competent Escherichia coli cells. After plasmid isolation from transformed cells, the cloned DNA fragments were sequenced with vector primers (White et al. 1990) in both directions by Taq polymerase cycle sequencing on an automated DNA sequencer (Perkin-Elmer ABI Prism 373). Sequence data were compared to gene libraries (EMBL and GenBank) using BLAST (Altschul et al. 1990). The percentage of identity among the Acaulospora sequences was calculated using the BLASTn analysis. The new sequences were deposited in the EMBL database under the accession numbers HG421736-HG421738.

Phylogenetic analyses: The phylogeny was reconstructed by independent analyses of the ITS region and partial LSU rDNA. The AM fungal sequences obtained were aligned with other Acaulosporaceae sequences from GenBank in ClustalX (Larkin et al. 2007) and edited with BioEdit (Hall 1999). Claroideoglomus etunicatum (W.N.Becker & Gerd.) C.Walker & A.Schüssler was included as an outgroup. Prior to phylogenetic analysis, the model of nucleotide substitution was estimated using Topali 2.5 (Milne et al. 2004). Bayesian (two runs over 2 × 10^6 generations with a burn in value of 2500) and maximum likelihood (1000 bootstrap) analyses were performed in MrBayes 3.1.2 (Ronquist & Huelsenbeck 2003) and PhyML (Guindon & Gascuel 2003), respectively, launched from Topali 2.5, using the GTR + G model. Neighbor-joining and maximum parsimony analyses were performed using PAUP*4b10 (Swofford 2003) with 1000 bootstrap replications.

Results

Acaulospora viridis Palenz., Oehl, Azcón-Aguilar & G.A.Silva *sp. nov.* Figs 1–12

Mycobank MB 804883

Etymology: Latin, *viridis*, referring to the greenish color of spores above all when observed in water under the dissecting microscope.

Holotype: Spain, Andalucía, Granada, from single species pot culture generated at the Estación Experimental del Zaidín, on Sorghum vulgare (collector J.Palenzuela). Culture was initially inoculated with spores isolated from pot trap cultures of Artemisia umbelliformis grown in the original soil substrate deriving from Sierra Nevada (37°04’N; 3°16’W; 2912 m asl). Specimens were deposited at Z + ZT (common mycological herbarium of the University and ETH of Zurich, Switzerland; ZT Myc 42872). Isotypes of the pot culture were deposited at Z+ZT (ZT Myc 42873) and GDA-GDAC (herbarium of the University of Granada, Spain). Paratypes (deposited at Z+ZT and GDA-GDAC) were isolated from rhizospheric soils and from trap cultures of other sites in Sierra Nevada and Sierra de Baza (1855–3200 m asl) (Table 1).

Description: Sporiferous saccules are hyaline and singly formed at the end of mycelial hypha. The saccules are globose to subglobose (145–190 × 140–185 µm), with 1–2 wall layers that are in total 1.5–2.8 µm thick. The saccule neck is 27–51 µm broad at the saccule terminus, about 20–34 µm at the point of spore formation, and tapers to 7–12 µm
Figs 1–12. *Acaulospora viridis*. Figs 1–2. Uncrushed spores, sporiferous saccules detached from the spores. Figs 3–6. Crushed spores with three walls (OWL1-3, MWL1-2, IWL1-2) and degrading saccule necks and saccule terminus (sac) attached. Figs 7–9. Triple-walled, crushed spores; middle wall staining purple in Melzer’s reagent (Fig. 8). Figs 10–12. Bi-layered middle and inner walls; MWL1 staining pink to purple in Melzer’s (Figs 11–12).
in 120–160 µm distance from the spore towards the mycelium. The saccule usually collapses after the spore wall has formed and usually is detached from mature spores.

Spores (Figs 1–8) form laterally on the neck of sporiferous saccules in distance of 50–120 µm from the saccule terminus. They are globose to subglobose, 140–205 × 140–193 µm in diameter, and greenish yellow brown to greenish brown to rarely brown, showing a characteristic greenish tint in particular on younger spores under the dissecting microscope in water. The spores have three walls of which the middle react with the Melzer’s reagent.

Outer spore wall consists of three layers (OWL1–OWL3) and is in total 6.9–12.1 µm thick (Figs 1–9). Outer layer (OWL1) is subhyaline to pale brown, 1.5–2.6 µm thick, evanescent. Second layer (OWL2) is greenish yellow brown to greenish brown, 4.9–8.5 µm thick. The inner layer of the outer wall (OWL3) is concolorous with OWL2, about 0.5–1.0 µm thick and often difficult to observe, especially when the middle wall does not separate readily from OW.

Middle wall is hyaline, bi-layered and thin; 1.4–3.5 µm thick in total (Figs 4–12). Both layers (MWL1 and MWL2) are semi-flexible, tightly adherent to each other and thus, often appear as being only one wall layer. MWL1 stains light purple to purple in Melzer’s reagent, while MWL2 regularly does not stain.

Inner wall is hyaline, with two to three layers (IWL1–IWL 3) that are 1.9–3.5 µm thick in total (Figs 4–12). The IWL1 is about 0.8–1.3 µm thick. A 'beaded', granular structure, is evident in water but rarely seen in lactic acid based mountants after a few months of permanent fixing. IWL2 is 0.8–1.6 µm thick and infrequently stains pinkish in Melzer’s reagent. IWL3 is very thin (<0.6 µm) and usually very difficult to detect due to the close adherence to IWL2.

Cicatrix (Fig. 5) remains after detachment of the connecting hypha, 10–18(–25) µm wide. The pore is closed by inner lamina of OWL2 and by OWL3.

Mycorrhiza formation: forming vesicular-arbuscular mycorrhizal associations with *Sorghum vulgare* L. and *Trifolium pratense* L. as host plant host in pot cultures. The mycorrhizal structures consisted of arbuscules, vesicles, and intra- and extraradical hyphae staining dark blue in 0.05% trypan blue.

Molecular analyses: The phylogenetic analysis from ITS rDNA sequences places the new fungus in a well separated clade between two major clades of the Acaulosporaceae (Fig. 13). The tree obtained with the partial sequences of the LSU rDNA positions the new fungus also in a well separate clade next to *A. laevis* and *A. entreriana* (Fig. 14), with 92% and 91% of identity, respectively. For the ITS region, the closest species related to *A. viridis* were *Acaulospora entreriana*, *A. colossica* and *A. laevis* with 89%, 88% and 88% of identity, respectively. The intraspecific variations between the different clones of *A. viridis* were about 1–2% for the ITS and LSU rDNA sequences. The environmental LSU rDNA sequence with closest match (98%) to *A. viridis* was found in grass roots (KC515563) sampled in the Tibetan Plateau, Mount Sijilaa (China). No environmental ITS sequences deposited in the GenBank corresponded to the new fungus in the BLASTn analysis.
Fig. 13. Phylogenetic tree of the Acaulosporaceae obtained by analysis from ITS1, 5.8S rDNA and ITS2 sequences. Sequences are labeled with their database accession numbers. Support values (from top) are from neighbor-joining (NJ), maximum parsimony (MP), maximum likelihood (ML) and bayesian analyses, respectively. Sequences obtained in this study are in boldface. Only support values of at least 50% are shown. Thick branches in grey represent clades with 100% of support in all analyses. The tree was rooted by *Clarideoglomus etunicatum*. (Consistency Index = 0.55; Retention Index = 0.86).
Fig. 14. Phylogenetic tree of the Acaulosporaceae obtained by analysis from partial LSU rDNA sequences of different Acaulospora spp. Sequences are labeled with their database accession numbers. Support values (from top) are from neighbor-joining (NJ), maximum parsimony (MP), maximum likelihood (ML) and bayesian analyses, respectively. Sequences obtained in this study are in boldface. Only support values of at least 50% are shown. Thick branches in grey represent clades with 100% of support in all analyses. The tree was rooted by Claroideoglomus etunicatum. (Consistency Index = 0.50; Retention Index = 0.84).
Distribution of A. viridis: The new fungus was found in field soil samples from seven sites in two mountain ranges, i.e. i) in Sierra Nevada National Park between 1270 and 3200 m asl, growing in the rhizosphere of endangered plants species such as Artemisia umbelliformis, Sorbus terminalis and Papaver lapeyrousianum, of critically endangered plant species as S. hybrida and Laserpitium longiradium, and a vulnerable plant species, Erodium daucoides, and ii) in Sierra de Baza Natural Park, at 1855 and 2028 m asl, in the rhizosphere of shrubland plant species like Berberis hispanica, Prunus ramburii, Rosa pouzinni and Crataegus monogyna as well as in a mountainous grassland composed of plant species such as Festuca iberica and Trifolium repens subsp. nevadense (among others Table 1).

In Sierra Nevada, the fungus co-occurred with the following AMF species: Acaulospora laevis, Ambispora gerdemannii, Clarideoglomus etunicatum, Diversispora versiformis, Funneliformis caledonius, Glomus intraradices, Gl. rubiforme and Pacispora scintillans. In Sierra de Baza Funneliformis mosseae, Septoglomus constrictum, Gl. intraradices, Entrophospora infrequens, Scutellospora calospora and an undescribed Acaulospora sp. were the most frequent AMF species accompanying the new fungus at their habitats.

Specimen examined: Holotype, isotype and paratype specimen, deposited at Z+ZT and GDA-GDAC, and in private collections of J.Palenzuela and F.Oehl.

Discussion

Acaulospora viridis can easily be distinguished from all other Acaulospora species, by i) the regularly greenish brown appearance of the spores above all in water, and in PVLG, ii) the pinkish to purple staining feature of the middle wall when exposed to Melzer’s reagent, and iii) by its characteristic phylogenetic clade. Of all Acaulospora species, only A. koskei has a comparable staining reaction in Melzer’s reagent (Błaszkowski 1995), but this staining is detected on the innermost layer of the outer wall and on the inner wall, while in A. viridis the main staining is on the middle wall, but rather weak and infrequently found on the inner wall, and absent on the outer wall. Phylogenetically, A. viridis is clearly separate from A. koskei.

Without use of Melzer’s reagent, spores of A. viridis may be confused with spores of A. laevis, A. capsicula, A. colliculosa, A. entreriana, A. koskei and A. thomii, as spores of all these species are about 120–160 µm and, with some divergencies, of a yellow-brownish, or reddish-brown to brown color (Gerdemann & Trappe 1974, Błaszkowski et al. 1990, 1995, Schultz et al. 1999, Velasquez et al. 2008). Acaulospora laevis forms honey-colored spores (Mosse 1970, Gerdemann & Trappe 1974), A. capsicula capsicum-like reddish-brown spores (Błaszkowski et al. 1990), while A. viridis spores a characteristic greenish tint, and such colour has not been observed for other Acaulospora species so far (Oehl et al. 2012). If doubts appear about the identification of those Acaulospora spp. it is recommended to measure, besides spore size, the spore walls and wall layers dimensions, and above all to expose some spores to Melzer’s reagent to check for the diagnostic feature of A. viridis. Finally, A. thomii has a persistent, thick hyaline outermost spore wall layer (Błaszkowski 1988), while the outermost layer is substantially thinner and evanescent to semi-persistent in A. viridis.
The apparently overlapping spore morphological characteristics of the mentioned *Acaulospora* spp. might suggest that some of them have sometimes been misidentified in the past. On the other hand, the almost total absence of environmental sequences for *A. viridis* in public data bases may suggest that the new species is not widely distributed. In Andalucía, however, it was detected in two adjacent mountain ranges on a broad range of soil types, from Dystric Regosols to Calcaric Cambisols and on a rather large gradient of elevation above sea level (1270–3200 m), and in rhizospheric soils of plants belonging to several quite different plant families. The new fungus might play an important role for the survival of endangered host plants in Sierra Nevada and Sierra de Baza, especially in the neutral to slightly alkaline soils where most of the other *Acaulospora* species are regularly absent.

Acknowledgements

The authors thank Mario Ruiz Girela, Santiago Ferrón Moraleda and Jose Miguel Muñoz for their invaluable help in sample collection and information about the sampled sites in Sierra Nevada. This study was financially supported by the Spanish Ministry of Environment (MMA-OAPN, project 70/2005), the Junta de Andalucía (project P07-CV1-02952) and the Swiss National Science Foundation within the Program NFP48 'Landscapes and habitats of the Alps' and SNSF Project 315230_130764/1.

References

BŁASZKOWSKI, J. 1990: Polish Endogonaceae. IV. *Acaulospora capsicula* sp. nov. – Mycologia 82: 794–798.

SPAIN, J.L. 1990: Arguments for diagnoses based on unaltered wall structures. – Mycotaxon 38: 71–76.

VERESOGLOU, S.D., T. CARUSO & M.C. RILLIG 2013: Modelling the environmental and soil factors that shape the niches of two common arbuscular mycorrhizal fungal families. – Plant Soil 368: 507–518.

Manuscript submitted September 27, 2013; accepted January 9, 2014.