Live land plants do not move and stay alive. They stay where they germinated or were planted as long as they live. An axiom that is as old as the plant kingdom itself. Only the imaginative trees of the "Old Forest" in the saga of J.R.R. Tolkien "The Lord of the Rings" are mobile as they pleased. Right?... wrong.

There are some cacti that move from one place to another. One of these unusual species is alive and well in Baja California. The botanical books say that the plant exists, and we heard long ago about the plant, but few of us ever saw one. It is the "Crawling Devil" cactus Stenocereus eruca.

Our first encounter with this unique plant was by sheer accident. Years ago, while exploring some remote, difficult to reach beaches on the Pacific coast of "Baja", Luz and I drove a long stretch of arid land, with...
nothing special worth looking at. It was mainly inhabited by the very common cactus pitaya agria (or sour pitaya) _Stenocereus gummosus_, whose main characteristic for us at that time was its juicy, dark-red pulp fruits with small black seeds we used to purchase in the supermarket during summer. Since this plant grows in our back yard, we paid little attention to its surroundings.

In a sandy area, we reached a patch in which, so it seemed, many branches of pitaya agria were thrown on the ground. Vandalism was our first thought—a rancher got hyperactive
of this unique feature, this species is known in English as "walking cactus," "creeping cactus," "devil cactus," or "crawling devil cactus." Take your pick. Locally, it is known as "chirinola," which is a meaningless odd name. The scientific species name, **eruca**, is derived from the Latin "erucan," means "caterpillar," which the plant resembles.

How did such a plant develop? There is no solid scientific evidence as yet, only probabilities. There are at least two options. It is possible that the species developed in relatively recent geological time from the pitaya agria cactus. The crawling devil shares many botanical features with pitaya agria, its closest relative (several years ago both species were the only members of the genus *Machaerocereus*, but later, they were combined with the larger genus *Stenocereus*). The other option is that the plant was derived recently from an ancestral plant, now extinct, of the crawling devil and the pitaya agria.

To search for clues of the origin of the crawling devil and its ties to pitaya agria, we visited Santa Margarita Island, an elongate island that separates the Pacific from the famous Magdalena Bay, home to wintering whales. To reach the island, we first drove to the "fishing port" called Puerto Chale. In this case, "Port" is a fancy name for a muddy channel laden with remains of marine creatures in a mangrove swamp. Our choice was limited, since all the fishing boats to the island leave from this settlement. Two hours later, after a rough, back-breaking ride that reminded each of us of the painful existence of our kidneys, we reached the pristine Isla Santa Margarita. The island is surrounded with vast golden beaches, green mangroves growing in sandy estuaries, and thousands of frigate birds, seagulls, and ducks hovering in the clear and fresh Pacific breeze. The barefoot fishermen were enchanted by the idea that somebody paid them only to see a plant they considered a weed, and they joined the search. Walking in a spectacular landscape that would capture the imagination of any resort developer, we found the intermediate cactus. Not completely crawling devils, as the branches were still attached to the mother plant, but not erect ones like the pitaya agria. Only a thorough molecular genetics study will resolve the riddle of these closely related cacti.

On our long drives to see this cactus, we wondered aloud more than once why such a unique plant is so obscure. There is a very simple explanation to that. The distribution of this
cactus has an extremely narrow range and it grows mostly in dull landscapes attracting meager ecotourism. It is endemic to the state of Baja California Sur, and even in this remote state of Mexico, it appears only in very small areas near the Pacific coast over a range that is not longer than 150 km and occurs at elevations of less than 100 m. It is restricted to Bahia Magdalena flatland area at the southeast tip of the Sonoran desert, halfway between the city La Paz and the town of Guerrero Negro, about 1000 km south of the USA /Mexico border. In this area, it is abundant. Both pitaya agria and the crawling devil inhabit the Bahia Magdalena area, but the pitaya agria cactus is widespread over the Baja California Peninsula. As a speculation only, as no scientific evidence is available, perhaps in the past, the crawling devil inhabited, together with pitaya agria large areas of the peninsula.

Environmental and agricultural misuse of the land since the 16th century may have eliminated the vegetatively-produced populations, while the seed-borne pitaya agria was able to cope and maintain its original populations, while the seed-borne pitaya agria cactus has an extremely narrow range and it grows mostly in dull landscapes attracting meager ecotourism. It is endemic to the state of Baja California Sur, and even in this remote state of Mexico, it appears only in very small areas near the Pacific coast over a range that is not longer than 150 km and occurs at elevations of less than 100 m. It is restricted to Bahia Magdalena flatland area at the southeast tip of the Sonoran desert, halfway between the city La Paz and the town of Guerrero Negro, about 1000 km south of the USA /Mexico border. In this area, it is abundant. Both pitaya agria and the crawling devil inhabit the Bahia Magdalena area, but the pitaya agria cactus is widespread over the Baja California Peninsula. As a speculation only, as no scientific evidence is available, perhaps in the past, the crawling devil inhabited, together with pitaya agria large areas of the peninsula.

Environmental and agricultural misuse of the land since the 16th century may have eliminated the vegetatively-produced populations, while the seed-borne pitaya agria was able to cope and maintain its original habitats.

The scientific literature showed that the number of crawling devils range from 10 to 400 per hectare. Their average size is about 1m, but they can grow to 3 m and a diameter up to 8 cm. It also has massive, dense, and robust silver gray spines that prohibit any access to the plant surface, unless you are an insect, and a small one at that. As formidable as the plant is, and very well self-protected, in its habitat, this strange plant is currently endangered from agricultural encroachment, road construction and use of the flat land as illegal garbage dumps for the local fishing hamlets residing on the coast. Illegal cactus collectors attracted by its unique character, also do not contribute to the stability and survival of the population. Plants with such a small range are vulnerable to extinction. As sad as it sounds, eight years ago researchers at our research institute proposed to conserve this endemic and unique plant by creating a natural preserve. Nothing has been done, as yet. This article might serve as a wake-up call to environmental authorities.

Even though reproduction is asexual, the cactus flowers profusely. Although the verbal description of the flower is in botanical books, nobody we know of, save the local fishermen, ever saw the flower or published a photo. It’s a large nocturnal flower that probably opens late at night and closes in early morning, as do other flowers of this genus. As the areas where these cacti are growing are quite remote, it is quite inhospitable at night (it is also the habitat of plenty of blood-sucking insects and many snakes), our attempt to see a real flower was abandoned. Many closed buds, due to be seen. We took some consolation by looking at the spectacular flower of its close relative, pitaya agria. These plants have, like the crawling devil, a massive, funnel-type, cream-yellow flower about 12 cm long and 8 cm wide. Apparently pollination, probably by moths, is sufficient as the energy to produce this large flower in an area lacking plant resources, like the flatlands of Bahia Magdalena, is expensive.

The beginning and evolution of the subtribe Stenocereinae is captured in less than 100 pages in Stenocereus eruca, a book on pitaya agria by the same taxonomist. The similar, but common cactus pitaya agria Stenocereus gumnosus in early flower FAR LEFT and in full bloom LEFT.