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We have estimated levels of genetic diversity and partitioning in the Mexican endemic cycad species Dioon
sonorense, Dioon tomasellii, and Dioon holmgrenii, whose populations are exclusively distributed along the Pacific
seaboard. For the three species, the patterns of variation at 19 allozyme loci in a total of 11 populations were
evaluated. The average number of alleles per locus was in the range 2.05–1.68, corresponding to the northernmost
population of D. sonorense (Mazatán), and the southernmost population of Dioon holmgrenii (Loxicha), respectively.
In turn, the percentage of polymorphic loci peaked (94.73) in the El Higueral and Altamirano populations of Dioon
tomasellii, and was estimated to be lowest (57.89) in the Loxicha population of D. holmgrenii. The mean expected
heterozygosis varied markedly between taxa, with relatively high indices for D. sonorense and D. tomasellii
(HE = 0.314 and 0.295, respectively) and substantially lower values for D. holmgrenii (HE = 0.170). Comparison of
the inferred genetic structure based on F-statistics for the three species also indicated differences along the
north-south Pacific seaboard axis. For D. sonorense and D. tomasellii, local inbreeding (FIS) was zero but global
inbreeding (FIT) values were positive and significantly different from zero (0.130 and 0.116, respectively). By
contrast, values of both FIT and FIS were negative and significantly different from zero (-0.116 and -0.201,
respectively) for D. holmgrenii. The genetic differentiation between populations (FST) had positive values in all taxa
and corresponded with their geographic location along the north-south axis: according to this statistic, D. sonorense
was the most differentiated species (FST = 0.151), D. tomasellii had intermediate values (FST = 0.145), and D.
holmgrenii was the less differentiated taxon (FST = 0.069). Finally, a phenogram representing Nei’s genetic
distances among populations displayed three major groups, each one corresponding to each of the studied species.
Within D. tomasellii (of intermediate geographic distribution), a further division into two clusters corresponded
precisely to the pair of populations that are geographically divided by the Trans Mexican Neovolcanic Moun-
tains. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94, 765–776.
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INTRODUCTION

Two main research lines have been practiced to char-
acterize genetic variation between species of cycads
of the same genus, or within populations of the
same species. The first approach has involved stan-
dard molecular systematic analyses, either using
character-based (i.e. cladistic parsimony) or distance-
based (e.g. Neighbour-joining, maximum likelihood,
etc.) methods. Although the genus Cycas has been
approached from this perspective (Hill, 2004), most
cycad molecular systematic studies have been con-
ducted for genera in the Zamiaceae, including Cera-
tozamia (González & Vovides, 2002; Vovides et al.,
2004; De Castro, Vázquez-Torres & Luca, 2006),
Dioon (Moretti et al., 1993), Encephalartos (Van der
Bank et al., 2001; Treutlein, Vorster & Wink, 2004;
Vorster, 2004), and Zamia (Caputo et al., 2004). The
second line of research concerned with the character-
ization of cycad genetic variation is represented by
population genetic studies sensu stricto. Most popula-
tion genetics on cycads has consisted of analyses of
the distribution of genetic diversity within and
between populations of a single species (Keppel, 2002;
González-Astorga et al., 2003a, 2005, 2006). However,
a few studies have also been conducted for two or
more closely-related species within the same genus,
namely, Macrozamia (Sharma, Jones & Foster, 1998,
1999, 2004) and Cycas (Xiao et al., 2005; Xiao & Gong,
2006).

Although the population genetics studies on mul-
tiple Macrozamia and Cycas species mentioned
above contain valuable conclusions regarding genetic
structure, they do not include a satisfactory discus-
sion of the effects and impact of historical factors
of geological nature, as well as those of ecological
processes related to habitat fragmentation, upon the
current geographical distribution of the cycad popu-
lations involved. When the cycad species under scru-
tiny in population genetics work are rare, these
considerations are particularly important because
the populations of these species are usually under-
going threats due to change of land use, deforesta-
tion, and agricultural expansion (Van Geert et al.,
2007), as well as illegal extraction and environmen-
tal changes (DiBattista, 2007). Over the last
century, species in genera such as Encephalartos
(Encephalartos relictus and Encephalartos woodii;
Donaldson, 2003) have been considered extinct in
their wild locations in Africa (Walters, 2003). Like-
wise, Lepidozamia and Bowenia in Australia (Hill,
2003), Cycas in Asia (Hill, Chen & Loc, 2003), and
Microcycas and Dioon, in Cuba and Mexico, respec-
tively, are also endangered or threatened (Steven-
son, Vovides & Chemnick, 2003). If processes such
as the Pleistocene glaciations, the formation of flo-

ristic refugia, or local orogenic events are taken into
account, research that analyzes genetic diversity in
cycads can turn into ad hoc studies of the effects of
both historical (i.e. long-term) and ecological (i.e.
short-term) events upon the present distribution of
populations. In a series of recent studies, we have
already attempted this type of integration for the
Mexican cycad species Dioon edule and Dioon
angustifolium (González-Astorga et al., 2003a, b,
2005), as well as for Zamia loddigesii (González-
Astorga et al., 2006). However, in all these studies,
every cycad species was considered individually;
by definition, the interesting possibility of common
biogeographical processes affecting more than one
species simultaneously has not been investigated.

In the present study, we used allozyme markers to
examine the patterns and levels of genetic diversity in
three Dioon species located along the Pacific seaboard
of Mexico. The three species in question (Dioon sono-
rense, Dioon tomasellii, and Dioon holmgrenii) are
allopatric, with a geographic distribution that extends
north to south, in the aforementioned order. With a
specific interest in interpreting our empirical evi-
dence in the context of the current distribution of the
species’ populations recognized to date, and following
the integrative objectives outlined above, these inter-
pretations include explicit references to known past
historical/ecological factors, such as habitat fragmen-
tation, isolation of populations due to climatic
changes, and/or colonization of new environments.
The present work is part of an exhaustive research
program devoted to the explanation of the observed
biogeographic distribution of the contemporary diver-
sity of cycads across Mexico. At the same time, this
information can enhance the interpretation of phylo-
genetic reconstructions based on morphological and
molecular data. Finally, the conclusions from this
project can also be valuable for establishing which
criterion of rarity (Rabinowitz, 1981) best fits cycad
taxa from the Neotropics, as well as in directing
conservation biology efforts for threatened species
within this charismatic gymnosperm group
(González-Astorga et al., 2003a, b, 2005, 2006,
Vovides et al., 2004).

MATERIAL AND METHODS
STUDY SITES

The study was carried out on populations of D. sono-
rense, D. tomasellii, and D. holmgrenii from 11 locali-
ties along the Pacific seaboard of Mexico, separated
by distances in the range 20–1300 km (Fig. 1). All the
populations sampled include the known total distri-
bution range of the three species.
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SPECIES STUDIED

Dioon sonorense (De Luca, Sabato & Vázq.Torres)
Chemnick, Gregory & S. Salas-Mor.
This species is located at the extreme north-western
distribution for the genus, and is known only from
four localities in Sonora. It consists of plants with
trunks typically 30–90 cm tall, but not exceeding
150 cm and up to 25 cm in diameter, with a terminal
crown of up to 25 ascending, broad lanceolate pinnate
leaves, sometimes twisted near the apex, up to
100 cm long and 25 cm wide.

Dioon tomasellii De Luca, Sabato & Vázq.Torres
This species has the greatest distribution range for
the genus (approximately 800 km), extending from
northern Sinaloa to Guerrero. It consists of plants
with variable trunks, from semi hypogeous to arbores-
cent, reaching up to 200 cm tall or more and 30 cm
diameter, with a terminal crown of 14–30 or more
ascending to spreading elliptic to oblong pinnate
leaves that are flat to slightly convex, up to 200 cm
long and 36 cm wide.

Dioon holmgrenii De Luca, Sabato & Vázq.Torres
This species has a highly restricted geographic dis-
tribution, and is known from only two localities in
southern Oaxaca. It is a large arborescent cycad with
trunks up to 6 m tall and 40 cm diameter, with a

terminal crown of 15 to 30 or more ascending to
spreading flat, lanceolate pinnate leaves up to 130 cm
long and 25 cm wide.

SAMPLE COLLECTION

For the three Dioon species included in this study,
18–79 adults plants per population were sampled at
random. Samples of approximately 5 g of leaflet tissue
were transported in containers with ice, to avoid
protein denaturation, and then stored in a Revco
freezer set to -70 °C, until the moment of extraction.

ELECTROPHORESIS

Allozyme electrophoresis was performed on horizontal
potato starch gels at 10% V/W. Approximately 300 mg
of leaflet tissue from each individual were ground
using liquid nitrogen. Subsequently, 250 mL of extrac-
tion buffer (0.1 M Tris-HCl, pH 7.5, 4% PVP-40,
0.001 M ethylenediaminetetracetic acid, 0.01 M
CaCl2, 0.01 M MgCl2, and 0.1% b-mercaptoethanol;
González-Astorga et al., 2005) were added to dilute
and stabilize the enzyme extracts, which were then
stored on filter paper wicks at -70 °C. For each indi-
vidual plant, allozymic variation was scored for 19
loci (Table 1). Electrophoreses were carried out at
4 °C for 6.5 h to constant current of 50 mA and
voltage of 100 V.

Figure 1. Geographical distribution of Dioon sonorense (�) Dioon tomasellii (�), and Dioon holmgrenii (�) in Mexico.
Numbers indicate the geographical position of each population evaluated (Table 2). The Trans Mexican Neovolcanic
Mountain Range is illustrated at centre of the map (thick black jagged line). A and B indicate the populations above and
below the Trans Mexican Neovolcanic Mountains, respectively.
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STATISTICAL ANALYSIS

On the basis of the observed allozyme banding pat-
terns, allelic frequencies and values of observed het-
erozygosis (HO) were calculated using the TFPGA 1.3.
Program (Miller, 1997). From these data, the average
of alleles per locus (A), percent polymorphic loci (P),
and average expected heterozygosis (HE) were esti-
mated under the assumption of Hardy–Weinberg
equilibrium (Hartl & Clark, 1997). The parameters of
genetic diversity between species were contrasted
using analysis of variance (ANOVA), and the results
were later compared by Tukey’s multiple range test
for unequal sample sizes (Zar, 1999). In addition, we
performed a linear regression model for the latitude
and all the genetic diversity estimators in all popu-
lations, with the aim of exploring the relationship
between these variables.

The patterns of genetic variation within and among
populations in each species (genetic structure) was
estimated with F statistics (i.e. FIT, FIS, and FST)
(Wright, 1978), and analyzed by Tukey’s multiple
range test for unequal sample sizes (Zar, 1999). A
chi-square test was used (Weir, 1990) to determine
whether the FIT and FIS statistics (local and global
inbreeding, respectively) obtained for each species
differed significantly from zero. A chi-square test was
also performed to verify the significance of genetic
differentiation between populations (FST) in each
species. Finally, phenetic clustering of populations
within species was performed using Nei’s (1972)

genetic distances and the unweighted pair group
method with arithmetic mean (UPGMA) (Sneath &
Sokal, 1973) algorithm, as implemented in TFPGA,
version 1.3 (Miller, 1997). With the purpose of explor-
ing correlations between populational parameters
available in the literature for the cycads, we per-
formed lineal regression analyses between these
quantities (Zar, 1999).

RESULTS
GENETIC DIVERSITY

A total of 19 enzyme loci were analyzed by starch gel
electrophoresis (Table 1). The patterns of allelic dis-
tribution and number of alleles per locus were found
to vary across populations, with a few of them appear-
ing in restricted populations. The allele Idh C was
only found in two populations of D. sonorense
(Mazatán and Novillo), and the allele Sdh C was
found exclusively in the Nuri and Alamos popula-
tions. For D. tomasellii, the allele Got B was observed
only in the El Tuito and El Higueral populations.
Finally, the allele Mdh C was exclusively found in the
Loxicha population of D. holmgrenii (Table 2).

The mean of alleles per locus ranged from 2.05 for
the Mazatán population of D. sonorense, to 1.68
for the Loxicha population of D. holmgrenii. The
Mazatán and Loxicha populations, respectively, rep-
resent the northernmost and southernmost extremes
for the three species studied (Table 3). The analysis of

Table 1. Allozyme systems resolved in this research

Allozyme Locus abbreviation EC No. Buffer*

Acid phosphatase Acph 3.1.3.2 R
Alcohol dehydrogenase Adh 1.1.1.1 R
Anodic peroxidase Apx1, Apx2, and Apx3 1.11.1.7 R
Diaphorase Dia 1.6.99 R
Gliceraldeide-3-phosphate dehydrogenase G3pdh 1.2.1.12 R
Glutamate dehydrogenase Gdh 1.4.1.2 R
Isocitrate dehydrogenase Idh 1.1.1.41 R
Malate-dehydrogenase Mdh 1.1.1.37 R
Menadione reductase Mnr 1.6.99 R
Phosphogluco isomerase Pgi1 and Pgi2 5.3.1.9 R
6-Phosphogluconate dehydrogenase 6Pgd 1.1.1.44 R
Aconitate hydratase Aco 4.2.1.3 PK
Glutamate oxalacetate transaminase Got 2.6.1.1 PK
Malic enzyme Me 1.1.1.40 PK
Phosphoglucomutase Pgm 5.4.2.2 PK
Shikimate dehydrogenase Sdh 1.1.1.25 PK

*R and PK refer to system buffers of Yang & Meerow (1996) and Chao-Luan et al. (1999), respectively.
Nomenclature and abbreviations follow Wendel & Weeden (1989), based on the recommendations of the International
Union of Biochemistry.
EC No, Enzyme Commission Number.
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variance between the averages of the number of
alleles per locus indicated significant differences
between them, grouping D. sonorense with D. toma-
sellii, and separating D. holmgrenii (Table 3). Also,
the results of the linear regression between the mean
number of alleles per locus and the latitudinal distri-
bution of populations (i.e. A = 1.61 + 0.014b; F1,9 = 5.2,
R2 = 36.5%, P < 0.05), show a positive correlation
between increase in latitude and mean number of
alleles per locus. This correlation was not observed for
any other genetic diversity parameter. The percent-
age of polymorphic loci varied from 94.73 for D. toma-
sellii (El Higueral and Altamirano) to 57.89 for D.
holmgrenii (Loxicha) (Table 3). On average, the
expected heterozygosity was found to differ between
taxa, displaying higher values for D. sonorense and
D. tomasellii (HE = 0.314 and 0.295, respectively) com-
pared to D. holmgrenii (HE = 0.170) (Table 3).

PARTITIONING OF GENETIC VARIATION WITHIN

AND AMONG POPULATIONS

Genetic structure differed considerably in each
species of Dioon analyzed (Table 4). For D. sonorense
and D. tomasellii, the values of FIT (global inbreeding)
were positive and significantly different from zero
(0.130 and 0.116, respectively). By contrast, D.
holmgrenii had a negative value of FIT but signifi-
cantly different from zero (-0.116), which indicates
a heterozygote excess for this species. The analysis
of variance revealed significant differences between
these parameters (ANOVA: F2,54 = 570.4, P < 0.001).
The local inbreeding (FIS) was zero for Dioon sono-
rense and D. tomasellii whereas, for D. holmgrenii,
this value was negative, indicating an excess of het-
erozygous genotypes (FIS = -0.201). Given these FIS

values, for this level, the analysis of variance between
means for each taxon revealed significant differences
(ANOVA: F2,54 = 372.6, P < 0.001). The genetic differ-
entiation (FST) values for all taxa differed from zero,
and the variation due to differences between popula-
tions also contrasted between taxa; with D. sonorense

(northernmost distribution) having a higher value
(FST = 0.151) than D. tomasellii (FST = 0.145) (interme-
diate distribution) and D. holmgrenii (FST = 0.069)
(southernmost distribution) (Table 4). These differ-
ences were confirmed with the analysis of variance
between the averages of the FST values for each taxa
(ANOVA: F2,54 = 630.2, P < 0.001).

GENETIC RELATIONSHIPS AMONG TAXA

The mean of the genetic distances for the three
Dioon species was 0.05 ± 0.041. For all populations,
the UPGMA tree based on Nei’s (1972) genetic dis-
tances (Fig. 2, Table 5) displayed three major
groups, corresponding to each species as originally
defined in morphological terms. The populations cor-
responding to the species distributed in the central
region of the Mexican Pacific seaboard (D. tomasel-
lii) form two sub-groups, one located to the north
(Compostela and Pánuco populations) and the other
to the south (Altamirano, El Higueral and El Tuito
populations) of the Trans Mexican Neovolcanic
Mountains (Figs 1, 2).

Table 5. Nodes of genetic distances of Nei’s (1972) in
11 populations of three species of Dioon along the Pacific
seaboard of Mexico (Fig. 2)

Node Genetic distance Includes populations

a 0.149 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
b 0.083 5, 6, 7, 8, 9, 10, 11
c 0.072 5, 6, 7, 8, 9
d 0.041 1, 2, 3, 4, 5
e 0.038 7, 8, 9
f 0.032 5, 6
g 0.026 7, 8
h 0.023 1, 2, 3
i 0.020 10, 11
j 0.016 1, 2

Table 4. Means and standard deviations of F statistics (FIT, FIS, and FST) of three species of Dioon along the Pacific
seaboard of Mexico

Species N FIT FIS FST

Dioon sonorense 4 0.130 ± 0.06*a -0.025 ± 0.06NS, a 0.151 ± 0.38*a

Dioon tomasellii 5 0.116 ± 0.05**b -0.035 ± 0.03NS, a 0.145 ± 0.21**b

Dioon holmgrenii 2 -0.116 ± 0.15**c -0.201 ± 0.14*b 0.069 ± 0.032*c

*P < 0.05; **P < 0.01.
N, Number of populations. Values sharing letters are not significantly different at P < 0.001. NS, not significant.
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DISCUSSION
GENETIC DIVERSITY

The three endemic Dioon species included in the
present population genetics study maintain substan-
tial levels of genetic heterogeneity. This observation is
consistent with their extensive geographical distri-
bution along the Pacific Ocean seaboard of Mexico
(approximately 1000 km, from north to south), and
with the great diversity of habitats wherein they
occur. In all cases, the basic indicators of genetic
polymorphism show higher values than the averages
obtained by Hamrick & Godt (1996) for endemic
plants (i.e. A = 1.39; P = 26.3; HE = 0.063) and
Hamrick (2004) for 213 species of woody perennials
(i.e. A = 1.74; P = 47.9; HE = 0.144). When compared to
estimates for 26 cycad species studied so far, includ-
ing data from unpublished observations from several
Mexican Zamia species (A = 1.7; P = 56.4; HE = 0.189,
in Table 6), the average values of A, P, and HE for D.
holmgrenii, D. sonorense, and D. tomasellii are also in
the upper range. In the context of this phylogeneti-
cally focused comparison, there exists a positive
linear relationship between the number of studied
populations and genetic differentiation evaluated
from FST values (F1,23 = 7.58, P = 0.011, R2 = 24.8%;
Table 6). This meta-analysis agrees with the results
obtained for the three species studied here. Similar
values of genetic diversity were reported in four popu-
lations of the cycad Z. loddigesii, from the Gulf of
Mexico seaboard (A = 1.8; P = 66.6; HE = 0.266;
González-Astorga et al., 2006), which showed a lati-
tudinal cline.

PARTITIONING OF GENETIC VARIATION WITHIN AND

AMONG POPULATIONS

In relation to morphological and geographic variation,
the distribution pattern of genetic diversity for the
three Dioon species studied here is similar to that

found for D. edule and D. angustifolium, along the
eastern seaboard of the Gulf of Mexico (González-
Astorga et al., 2003a, b, 2005). However, certain inter-
taxa comparisons between the available estimates for
the Dioon species are not directly in agreement with
the hypothesis that species with small population
sizes have lower levels of genetic diversity than those
with larger sizes, as suggested by Barrett & Kohn
(1991); Mateu-Andrés (2004). Of the five Dioon
species for which population genetic data currently
exist (for unpublished data for Dioon caputoi, see
Table 6), D. sonorense has the highest A, P, and HE

values, but also the lowest mean number of plants
evaluated because these populations have been dras-
tically reduced in size in recent history (González-
Astorga & Núñez-Farfán, 2001; González-Astorga &
Castillo-Campos, 2004; Van Geert et al., 2007). On the
other hand, genetic variability estimators in D. sono-
rense and D. tomasellii are very similar to each other;
only Ni, which is the average sample size, turned out
to be approximately three times higher in the latter
species. Meanwhile, populations of D. holmgrenii,
which have a similar Ni value to D. tomasellii, have a
significantly lower FST value (Table 4). However,
despite the absence of a direct correlation between
small population sizes and lower genetic variability in
the interspecific comparisons, it might still be pos-
sible that the relatively high differentiation levels
found in D. sonorense (approximately 15%) are asso-
ciated with its small interpopulational sizes. The
currently observed Ni values in D. sonorense have
probably been determined by fragmentation processes
driven by human activities (González-Astorga et al.,
2006). In this respect, the observations of Ellis et al.
(2006) are worth considering because these authors
have shown that when populations of a species have
low levels of genetic structure, the loss of a single
population may have little impact on the species-wide
genetic variability but, under conditions of high

Figure 2. Unweighted pair group method with arithmetic mean phenogram based on Nei’s (1972) genetic distances
between 11 populations of three species of Dioon, estimated from 19 loci (Table 5).
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genetic structure, the loss of a single population
might significantly reduce overall genetic diversity.
This pattern might have implications for conserva-
tion, since the extinction of one of the populations of
D. sonorense, a species with highly fragmented popu-
lations, could therefore be critical with respect to its
overall genetic diversity.

It is noteworthy that D. holmgrenii maintains
higher genetic diversity than most endemic or

narrowly-distributed plant species (Hamrick & Godt,
1996; Hamrick, 2004), in spite of its restricted distri-
bution. Unlike the other two Dioon species investi-
gated in the present study, D. holmgrenii presents an
excess of heterozygotes, a situation that might be an
effect of stabilizing selection (Eguiarte, Pérez-Nasser
& Piñero, 1992; Hansson & Westerberg, 2002;
Gonzalez-Astorga et al., 2003a). Given its levels of
genetic diversity and long-life cycle, the observations of

Table 6. Summary of the genetic diversity and structure of 26 cycad species

Species N A P HE FST Reference

Cycas pectinata 11 1.82 58.5 0.076 0.387 Yang & Meerow (1996)
Cycas siamensis 13 1.48 58.9 0.134 0.291 Yang & Meerow (1996)
Cycas panzhihuaensis 3 1.13 14.3 0.061 0.139 Chao-Luan et al. (1999)
Cycas guizhouensis 3 1.61 58.3 0.100 0.080 Yang & Meerow (1996)
Cycas taitungensis 2 1.07 2.5 0.013 0.034 Lin et al. (2000)
Cycas seemannii 5 1.20 21.3 0.057 0.594 Keppel (2002)
Macrozamia communis 5 1.61 50.0 0.045 0.270 Ellstrand et al. (1990)
Macrozamia riedlei 15 2.43 93.0 0.274 0.092 Byrne & James (1991)
Macrozamia parcifolia 2 1.20 17.6 0.037 0.090 Sharma et al. (1998)
Macrozamia pauli-guilielmi 3 1.30 31.3 0.081 0.030 Sharma et al. (1998)
Macrozamia heteromera 5 1.30 26.0 0.077 0.100 Sharma et al. (1999)
Macrozamia plurinervia 9 1.50 36.6 0.111 0.588 Sharma et al. (2004)
Zamia loddigesii 4 1.80 66.6 0.266 0.790 González-Astorga et al. (2006)
Zamia pumila 4 2.21 16.7 0.041 – Walters & Decker-Walters

(1991)
Zamia cremnophila 2 2.06 100 0.429 0.174 González-Astorga J,

Nicolalde-Morejon F, Vovides
AP (unpubl. data)

Zamia katzeriana 3 2.13 87.1 0.298 0.191 González-Astorga J,
Nicolalde-Morejon F, Vovides
AP (unpubl. data)

Zamia lacandona 3 2.04 69.2 0.216 0.108 González-Astorga J,
Nicolalde-Morejon F, Vovides
AP (unpubl. data)

Zamia variegata 2 2.02 97.3 0.355 0.085 González-Astorga J,
Nicolalde-Morejon F, Vovides
AP (unpubl. data)

Zamia purpurea 2 2.03 100 0.485 0.025 González-Astorga J,
Nicolalde-Morejon F, Vovides
AP (unpubl. data)

Microcycas calocoma 7 1.49 48.1 0.170 0.337 Pinares de la Fe A,
Gonzalez-Astorga J, Vovides
AP (unpubl. data)

Dioon sonorense 4 2.00 81.6 0.314 0.151 Present study
Dioon tomasellii 5 1.96 83.1 0.295 0.145 Present study
Dioon holmgrenii 2 1.7 63.1 0.170 0.069 Present study
Dioon caputoi 4 1.91 79.0 0.350 0.099 Cabrera-Toledo, Gonzalez-

Astorga, Vovides (in press)
Dioon edule 8 1.44 54.8 0.240 0.075 González-Astorga et al. (2003a)
Dioon angustifolium 3 1.67 52.4 0.218 0.167 González-Astorga et al. (2005)
Mean ± SD 5.0 ± 3.5 1.70 ± 0.4 56.4 ± 29 0.189 ± 0.13 0.204 ± 0.2

SD, standard deviation; N, number of populations studied; A, mean of alleles per locus; P, percentage of polymorphic loci;
HE, expected heterozygosity; FST, genetic differentiation among populations.
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Mitton & Grant (1984) and Stilwell, Wilbur & Taylor
(2003), concerning a positive correlation between het-
erozygote genotypes and greater levels of homeostasis
and adaptability to changing environments (Mitton,
1978; Quattro & Vrijenhoek, 1989; Hedrick, 2006), can
also apply to this species. In addition to heterozygote
excess, the unusual loss of several alleles furthermore
suggests that D. holmgrenii might be of natural hybrid
origin, probably derived from Dioon merolae and D.
tomasellii. In a context of cytological evidence, Johnson
(1963) had already discussed hybrid swarms in cycads
for the Australian genus Macrozamia; aggregation of
taxa with such origins could exist in Neotropical
cycads. Furthermore, patterns of genetic diversity
similar to those displayed by this Mexican cycad
species are characteristic of novel hybrid genotypes
resulting from the mixing of parental genomes (Riese-
berg, 1997, 2006).

GENETIC RELATIONSHIPS AMONG TAXA

Out of the thirteen currently valid species of the
cycad genus Dioon, the species D. sonorense, D. toma-
sellii, and D. holmgrenii constitute a morphological
and geographical group of well-differentiated taxa (De
Luca, Sabato & Vázquez-Torres, 1981, 1984; Sabato &
De Luca, 1985). Although the objective of the present
study was not an evaluation of taxonomic relation-
ships, the overall results on the variation and genetic
structure of these three Dioon species are coherent
with the distribution of their morphological and geo-
graphical variation. The phenogram obtained with
the genetic diversity data clearly segregates three
groups that correspond to the three morphologically
defined species, particularly suggesting that D. toma-
sellii and D. holmgrenii maintain a closer relationship
to each other than any of the two with D. sonorense,
notwithstanding that Nei’s average genetic distance
remains small between all species. Interestingly,
these results are in contrast with those reported by
Moretti et al. (1993), who found a closer relationship
between D. tomasellii and D. sonorense based on
chloroplast DNA restriction fragment length polymor-
phism analysis. The phenogram also indicates that
the D. tomasellii populations located to the north of
the Trans Mexican Neovolcanic Mountains form a
separate group from those to the south of this moun-
tain range. In a recent cladistic biogeography study, it
was postulated that this mountain belt might have
been an outstanding determinant in the spatial evo-
lution of conspicuous Mexican gymnosperms (e.g.
pines; Contreras-Medina, Luna & Morrone, 2007).
Our phenetic analysis also suggests that this impor-
tant orographic barrier might have played a role in
genetic differentiation processes within D. tomasellii.
The extent to which differentiation at this level could

be reflected in other aspects of the biology of the
species can be assessed through a revision of the
morphological variation between the known popula-
tions, and the systematic evaluation of other sources
of information (e.g. nucleotide characters from the
chloroplast or the nucleus). It might be possible that
D. tomasellii at both sides of this transvolcanic moun-
tain range are currently engaged in an incipient spe-
ciation process (González-Astorga et al., 2005).

In order to corroborate the importance of the Trans
Mexican Neovolcanic Mountains for the distribution
of genetic variation found in the five populations of
D. tomasellii an analysis of molecular variance was
performed, on group A, to the north of the barrier and
group B, to the south (Figs 1, 2). The results indicated
that the variation explained among groups was 8% of
the total variance (0.737; P < 0.01), the variation
among populations was 19% (1.68; P < 0.01), and
within populations was 73% (6.57; P < 0.01); all were
found significant. These results agree with the incipi-
ent speciation hypothesis for D. tomasellii.

The geographical distribution of D. tomasellii covers
a number of states in Mexico, and the species is
protected in a private reserve in the state of Jalisco.
Therefore, we do not consider it to be critically endan-
gered; in our opinion, the present IUCN category
(IUCN, 2005) of endangered (EN A2abd) still holds.
However, in view of the small population sizes of D.
sonorense, which have been drastically reduced over
recent decades, we recommend that this species is put
under the IUCN (2005) Red List category of critically
endangered (CR A1, c, d). The reduction in population
sizes for D. sonorense has been the consequence of high
levels of exploitation for alcohol production (J. Rees,
pers. comm.), which in turn have caused high levels of
genetic differentiation, inbreeding and genetic drift.
Only one of the populations of D. sonorense is located
within a protected area and, because of the high
genetic variation in this species, a loss of any one of the
unprotected populations might significantly reduce the
overall genetic diversity of the species (Ellis et al.,
2006). We recommend that D. holmgrenii should be
listed as CR C2a(ii) in the IUCN Red List (IUCN, 2005)
because the populations have continued to decline and
the number of mature individuals in the two known
populations are estimated to be under 50%. As D.
holmgrenii is not found in any protected areas, the
habitats should be declared as sanctuaries, owing to
the narrow endemic status of this cycad species.
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