Symposium: Interactions of Mycorrhizal Fungi

Mycorrhizal Interactions with the Rhizosphere Microflora:
The Mycorrhizosphere Effect

R. G. Linderman

Supervisory research plant pathologist, Agricultural Research Service, United States Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, OR 97330.

Mycorrhizal fungi are ubiquitous in soils throughout the world and form symbiotic relationships with the roots of most terrestrial plants. Such relationships generally form in the presence of a myriad of microorganisms, and there is abundant literature to support the contention that some of those microbes interact in rather specific ways to influence the mycorrhizal relationship and its effects on plant growth. The purpose of this review is to describe the development of the mycorrhizosphere (i.e., the enhanced microbial activity in the soil around mycorrhizae as distinguished from that in the rhizosphere soil around nonmycorrhizal roots), to shed some light on the kinds of interactions that occur between mycorrhizal fungi and the soil microflora, and to underscore the need to evaluate plant responses to microbial inoculations in light of the mycorrhizosphere phenomenon. Discussions largely will be restricted to interactions with bacteria and fungi other than those involving nitrogen-fixing organisms and plant pathogens.

A wide diversity of fungal groups form several morphological types of mycorrhizal associations. For example, ectomycorrhizae are formed by many species of Basidiomycete and Ascomycete fungi, and only with members of the plant families Pinaceae, Betulaceae, Fagaceae, Salicaceae, and Myrtaceae. Some of the same fungi that form ectomycorrhizae may also form an endendomycorrhizal relationship with members of the Ericaceae. Other ericaceous plants form an erioid type of endomycorrhizal association with a restricted number of fungi, namely members of the general Hymenoscyphus (= Pezizella) (Ascomycetes), Oidiodendron (Hyphomycetes), and possibly Clavaria (Basidiomycetes). Orchids form a type of endomycorrhizal association with fungi in the form genus Rhizoctonia (Deuteromycotina). Most of the remainder of the plants on the earth form an endomycorrhizal type of association with members of the Endogonaceae, primarily in the genera Glomus, Gigaspora, Sclerocystis, Acaulospora, and Eniophospora. The latter relationship is typified by the production of vesicles and arbuscules within root cortical cells, and, thus, is referred to as vesicular-arbuscular or VA mycorrhizae.

Because the fungi and hosts of the various types of mycorrhizae are so different, it is important to recognize that aspects of the symbiosis may also be very different. Furthermore, the extent of our knowledge of details of these relationships varies greatly, a fact that will significantly affect any consideration of microbial interactions with mycorrhizae.

Major benefits from mycorrhizae. In the nearly ubiquitous symbiotic relationship between plant roots and mycorrhizal fungi, the latter have been shown to help plants acquire mineral nutrients from the soil, especially mobile elements such as P, Zn, and Cu, but also more mobile ions such as S, Ca, K, Fe, Mg, Mn, Cl, Br, and N (49). In soils where such elements may be deficient or otherwise less available, mycorrhizal fungi increase efficiency of mineral uptake, resulting in enhanced plant growth. Mycorrhizae also have been shown to increase water uptake and/or otherwise alter the plant's physiology to reduce stress response to soil drought (34, 41). Furthermore, mycorrhizal fungi can reduce plant response to other soil stresses such as high salt levels; toxicities associated with mine spoils or land fills, heavy metals; or toxicities due to minor element imbalances such as Mn toxicity (49). Mycorrhizal fungi have in some cases reduced the disease response to plant pathogens due to some morphological or physiological change in the plant (14). Some mycorrhizal fungi produce metabolites that can alter the plant's ability to produce roots from cuttings or to alter root regeneration and root morphology.

This article is in the public domain and not copyrightable. It may be freely reprinted with customary crediting of the source. The American Phytopathological Society, 1969.
resulting in greatly increased absorptive surface area and feeder root longevity (26, 43). Mycorrhizal fungi are known also to alter soil texture by increasing the extent of soil particle aggregation and thus stability (47). A further benefit to some people is the production of edible mushrooms or truffles by certain ectomycorrhizal fungi while in their symbiotic associations.

Many of the mycorrhizal plant responses discussed above are the result of altered plant physiological processes. Increased uptake of mineral elements from soil will obviously alter the nutrient balance of the plant tissues. The carbon balance in plants will also change because of increased photosynthetic rate and altered carbon partitioning in mycorrhizal plants (35). The fact that mycorrhizal fungi have been shown to induce changes, usually increases, in phytohormone production (i.e., cytokinins, gibberellins, and ethylene) suggests that mycorrhizae play a key role by influencing regulatory systems in plants (17, 17, 43). One of the major changes in mycorrhizal plants is reduced membrane permeability (17), primarily due to increased P nutrition (38). Corresponding to the decreased membrane permeability is a change in the quality and quantity of root exudation (42) which, in turn, has the potential to induce a significant response in the rhizosphere microflora and microfauna.

Root morphology and function. Root morphology is commonly depicted as in Figure 1A (similar to that of Rovira [40]), with root epidermal cells and root hair projections, cortex, stele, and a root cap somewhat surrounding a meristematic region. Roots offer structural support to the plant, function in the absorption of water and mineral nutrients, are the site of production of growth regulators such as cytokinins and gibberellins, are a site of starch storage, and provide a nutrient supply for a wide range of microorganisms (12, 40). These nutrients are organic materials released into the rhizosphere as exudates (nonmetabolic leakage), secretions (metabolic release), plant mucilages, a mucigel, and lysates from sloughed cells. The root exudates and secretions are water soluble sugars, antibiotics, organic acids, and volatile compounds (19). The quality and quantity of these compounds can change significantly in response to a variety and combination of factors and conditions.

The rhizosphere effect. In 1904, Hiltner recognized the rhizosphere as that portion of the soil subject to the influence of plant roots and in which significant increased microbial activity occurs. Since then, many reviews (21, 40) and even a recent book by Curl and Truelove (12) have discussed the concept and its implications to plant growth and health. All agree that the rhizosphere effect is a dynamic process initiated by root exudation and other release of organic nutrients and is influenced by host factors such as species, age, and stage of development, soil factors such as fertility, moisture level, and physical properties; environmental conditions such as light and temperature; cultural practices including foliage applications of chemicals; and soil microbial interactions. The rhizoplane and the surrounding rhizosphere soil are colonized or otherwise occupied by a wide range of microorganisms including saprophytes, a microflora, innocuous endophytes, exopatogens, pathogens (parasitic), mycorrhizal fungi, and growth-promoting and deleterious rhizobacteria (12).

Development of mycorrhiza. Mycorrhizal fungi exist in soil as spores or as vegetative propagules in root fragments, not unlike other soilborne and most root-inhibiting fungi. Propagules of mycorrhizal fungi apparently respond to the stimulation of root exudates, and their hyphae or germ tubes grow and penetrate root epidermal cells. The colonization of host tissue progresses both internally and externally along the root surface, the latter resulting in initiation of new colonization sites. Depending on the host-symbiont combination, the colonization results in morphological and physiological changes in both host and fungus leading to the formation of an ecto-, endo-, arbo-, or endomycorrhizal relationship.

In the case of ectomycorrhizae, root morphology changes dramatically from the nonmycorrhizal state (compare Fig. 1A and C), i.e., loss of root hairs, the development of a thick fungal mantle surrounding the epidermis and cortex, and the development of extensive root branching. An extensive network of fungal hyphae and rhizomorphs forms that may extend some distance out into the surrounding soil. The increased root branching and hyphal network greatly increase the absorptive surface area.

Fig. 1. Morphological changes in roots as they become mycorrhizal and the effects of these changes on the development of a mycorrhizosphere. A, Generalized nonmycorrhizal root (similar to that of Rovira [40]), with root hairs and indicated sources of organic materials available as substrates for rhizosphere microorganisms. B, Endomycorrhize with indicated morphological changes such as reduced tissue sloughing, lack of root hairs, presence of external hyphae, thick-walled spores, and associated soil aggregates; and thickened endodermis (not shown): no obvious change in surface area. C, Ectomycorrhizae indicating dramatic morphological changes such as development of a fungal mantle plus extensive external hyphae and rhizomorphs and associated soil aggregates, loss of root hairs, and greatly increased branching and surface area.
With *Entomomyces*, development of the mycorrhizal state involves little obvious change in root morphology (compare Fig. 1A and B). In some plants, a yellow pigmentation accompanies root colonization, and the endodermis may become thickened. Generally, development of *Entomomyces* results in loss of root hairs, but no external fungal mantle forms except for the relatively sparse external hyphae that occur at the rhizoplane and extend out into the surrounding soil.

The physiological changes that accompany the development of mycorrhiza are undoubtedly extensive and by no means have they been completely characterized. The changes that would have the greatest impact on microorganisms in the surrounding soil, however, are the altered permeability of membranes, which will affect the quantity and rate of root exudation and secretion (38, 42), and the changes in nutrient and elemental composition of the host tissues. These changes, coupled with the chemical and physical impact of the fungal symbiotic hyphae in the surrounding soil, result in a very different potential in the rhizosphere. Thus, that Rambelli (37) suggested the term "mycorrhizosphere" be used to describe the soil surrounding and influenced by mycorrhizae.

The mycorrhizosphere effect. When mycorrhizae form, the symbiotic relationship significantly changes the physiology and/or morphology of roots and the plant in general. The changes in root exudates cause a new microbial equilibrium to be established. These changes presumably involve the same types of organisms as those in the rhizosphere before formation of mycorrhizae, but quantitative changes occur within these types as a result of direct metabolic interaction with the mycorrhizal fungal hyphae or spores, or the indirect effects mediated by the host. In most reports of microbial interactions in the mycorrhizosphere, no distinction between direct and indirect effects has been made.

The mycosphere effect. A key difference between the rhizosphere effect in soil surrounding non-mycorrhizal roots and the mycorrhizosphere effect is the presence of mycorrhizal fungus extra-matrical hyphae that extend out some distance from the host tissues into the soil (18, 39). The hyphae of *VA mycorrhizae* are relatively sparse compared with the profusion of hyphae and rhizomorphs that are associated with *ectomycorrhizae*. Regardless of type, however, extra-matrical hyphae of mycorrhizal fungi have a profound effect on the soil microflora, just as do fungal structures of other soilborne fungi. Gilbert and Linderman (16) suggested the term "mycosphere effect" to describe the enhanced microbial populations of selected microorganisms near fungal structures in soil. It has been shown that extra-matrical hyphae of *VA* mycorrhizal fungi exude substances that cause soil and organic fractions to aggregate (47). Microorganisms flourish in the aggregates, and fungi, bacteria, actinomycetes, and algae (including cyanobacteria) have been isolated from them (15). It has been shown with fungal root pathogens (16) that the microorganisms in the mycosphere are selectively favored by the fungal exudates, while others from the soil are not. The microbes in the mycosphere of mycorrhizal fungi may profoundly affect mycorrhizal functions, such as nutrient and water uptake, which are mediated by the extra-matrical hyphae. Because these hyphae or hyphal strands extend into the soil, they may also effectively extend the limits of the mycorrhizosphere considerably past the limits of the rhizosphere of non-mycorrhizal roots (39). Mycorrhizal extra-matrical hyphae are nutritionally supported by the host, but their biomass may be influenced by soil microorganisms and by soil factors such as pH, texture, fertility, and pesticide content (18, 47).

Microbial interactions. The reported microbial interactions in the mycorrhizosphere may involve a variety of bacteria and fungi with specific functional capabilities that may influence plant growth. This may include microbes such as strict or facultative anaerobes, extracellular chitinase producers, phosphatase solubilizers, siderophore producers, antibiotic producers, hormone producers, pathogen suppressors, plant growth promoters, exopathogens, mycorrhiza suppressors, etc. However, information is limited for many of these groups of organisms.

Orchid and ericoid mycorrhiza. I am not aware of any reports of microbial interaction with either orchid or ericoid mycorrhiza.
naturally occurring microflora. They showed no quantitative difference in total bacteria in the rhizosphere soils from mycorrhizal and nonmycorrhizal plants, but significant qualitative shifts. For example, facultative anaerobes (possible nitrogen fixers and ethylene producers) increased in the mycorrhizosphere soil, but fluorescent pseudomonads decreased. Fluorescent pseudomonads significantly increased in the rhizoplane of mycorrhizal plants, however, as did the total number of bacteria. Their study also showed that microbial shifts had occurred in the mycorrhizosphere that adversely affected the microbe-influence on sporangial induction of the root pathogen *P. cinnamomi*. Ames et al. (2) have also demonstrated that certain introduced bacteria were selectively influenced in rhizosphere soil by mycorrhizae. It seems apparent that some of those microbial shifts could influence or be directly advantageous to the plant response.

When selected bacteria have been used in dual inoculations with VA mycorrhizal fungi, significant interactions have resulted. For example, dual inoculations with VA mycorrhizal fungi and rhizobacteria have resulted in increased mycorrhizal colonization (8,29), possibly due to increased spore germination as demonstrated by Mayo et al. (28). The majority of the other dual inoculation reports demonstrate that beneficial bacteria, such as symbiotic or free-living nitrogen fixers (6,9,46,48), phosphate solubilizers (3,36), or plant growth-promoting rhizobacteria (PGPR) (11,20,29), somehow work in tandem with mycorrhizal fungi to give additive or synergistic growth enhancement of the host plant. Meyer and Linderman (29) demonstrated that dual inoculation with VA mycorrhizal fungi and a growth-promoting pseudomonad induced an additive growth response on subclover (*Trifolium subterraneum* L.). Whether the two organisms interacted directly outside the host or indirectly via some physiological change in the host plant was not determined. Uptake of minor elements was increased by the dual inoculation, possibly because of increased colonization by the mycorrhizal fungi in the early stages of plant development. Also, increase in nodulation by *Rhizobium* was greatest when both VA mycorrhizal fungi and PGPR were used (29).

In cases of growth benefit by dual inoculation with mycorrhizal fungi and some rhizobacteria, it is assumed that each beneficial microbe contributes something toward enhanced plant growth, such as increased nitrogen or solubilize phosphate. The mechanisms may be much more complex than that, however, and elucidating them should be the subject of future research. Furthermore, some of the bacteria involved may be interacting on more than one metabolic level, i.e., P solubilizers may also be auxin producers, or N fixers may also produce antibiotics (3,4,20,45).

Some bacteria may also have a suppressive effect on mycorrhiza formation and host response, such as that reported by Krishna et al. (23) with *Streptomyces* and VA mycorrhizae. It is conceivable that frequent failures to successfully establish mycorrhizal fungi are due to microbial competition and suppressed colonization. Similarly, failure to demonstrate growth benefit from inoculation with some rhizobacteria may be due to the suppressive effect of competing bacteria.

Mycorrhizae and the general microflora. There have been some reports suggesting that the general microflora of the soil may have a significant influence on the formation of the mycorrhizal association. The development of extra-matrical hyphae of mycorrhizal fungi, for example, may be stimulated by the microflora. Sutton and Shepperd (47) showed that adding nonsterile soil leachate to a pasteurized soil increased the biomass of extra-matrical hyphae of VA mycorrhizae in some undetermined manner. St. John et al. (44) showed that VA mycorrhiza formation was stimulated by a volatile compound, possibly ethylene (or some other compound easily oxidized by potassium permanganate), that could have been a product of the soil microflora. Bowen and Theodorus (10) showed that certain bacteria isolated from ectomycorrhizae could stimulate in vitro growth of the mycorrhizal fungi, but neither the mechanism of interaction nor the effect of the bacteria in vivo was studied. It seems reasonable to hypothesize that the soil microflora could stimulate the development of hyphal strands and rhizomorphs of ectomycorrhizal fungi, but this too is a subject of future research.

Host responses to mycorrhizae reconsidered. Plants respond to the presence of mycorrhizae in a number of ways, as discussed earlier. It seems appropriate to reconsider those benefits attributed to mycorrhizae in light of the mycorrhizosphere interactions discussed here. The key question to ask is whether the host responses are due to the presence of mycorrhizae alone, to other beneficial rhizosphere microorganisms, or to their combination. For example, is increased P uptake by mycorrhizae a function of the increased absorption potential due to the development of extramatrical hyphae, or is it due to the combined effect of those hyphae and hypha-associated P-solubilizing bacteria? Are changes in root production and/or morphology due to products of the mycorrhizal fungus or associative bacteria? Is reduced root infection by pathogens due to effects of mycorrhizae and/or their products? Are other effects of mycorrhizae due to the microorganisms and their products? Given the findings mentioned here, it seems reasonable to think that host responses to mycorrhizae are the result of the mycorrhizal fungi plus its mycorrhizosphere associates. This question was also raised by Bugaraj (5) in discussing the work by Williams (50) who observed that certain "companion fungi" occurred at high frequency in VA mycorrhizal pot cultures. Certain isolates of those companion fungi could stimulate, inhibit, or have no effect on plant growth. Where such fungi are present in VA mycorrhizal pot culture inoculum, are they or the mycorrhizal fungi responsible for growth enhancement when that inoculum is used? One cannot ask a similar question regarding the presence of certain bacterial associates that could occur in pot cultures or any nonsterile soil used in growth studies. In mycorrhiza experiments, careful control treatments are usually included to provide microbes that might influence growth response independent of the mycorrhizal fungi. It may not be possible, however, to provide the same potential for such microorganisms to increase without the support of the mycorrhizal fungi in the treatment.

Host growth responses to rhizobacteria reconsidered. Beneficial rhizobacteria have been credited with having positive effects on the growth of plants (11). Growth enhancement effects from inoculation with these bacteria may be due to enhanced nutrient availability, production of growth regulating substances, or to pathogen suppression by antagonism or competition. In few instances where natural soil is used, however, has the involvement of mycorrhizal fungi been considered, even though they are known to be ubiquitous in terrestrial soil environments. Most plants (excluding aquatic plants and a few exceptional families) are rarely ever nonmycorrhizal unless the soil has been specifically treated with heat or chemicals, or roots are examined in the very early seedling stage before mycorrhizae have established. Because most of the groups of known beneficial rhizobacteria have been shown to positively interact with mycorrhizal fungi, it seems likely that the benefits for which those bacteria are credited might also be the product of the interaction, at least where tests were conducted under natural soil conditions. In many cases, researchers should reevaluate their results in light of the probable impact of mycorrhizal fungi. Furthermore, many anomalies and inconsistencies that plague most studies in soil-related sciences might be explained if mycorrhizal fungi are considered as a possible uncontrolled variable in the experiments.

Managing the mycorrhizosphere. If our goal is to maximize beneficial plant growth responses, then optimum combinations of mycorrhizal fungi and selected bacteria should be used. This management strategy is well supported by the numerous reports already discussed wherein dual inoculations resulted in more growth enhancement than with either organism alone. It is important, therefore, to identify the best strains of beneficial microbes for the planting situation, verify their compatibility and combined efficacy, and employ this combination inoculum in real agricultural situations as part of the management and production practices (25). Although this seems to be a very large task, it is possible if done systematically. Mycorrhizal fungi and bacterial associates must be characterized as completely as possible regarding the soil conditions they prefer, as well as the host plant.
with which they were found associated. Tailoring the microbes to fit the growth situation will increase the chances of successful exploitation of the mycorrhizosphere phenomenon.

Conclusions. In light of these discussions based on considerable documentation in the literature, it seems reasonable to consider the following conclusions: 1) The mycorrhizosphere, as compared with the rhizosphere, is the rule, not the exception; 2) if we are to understand rhizosphere reactions and interactions, we must understand mycorrhizae and thus the mycorrhizosphere; 3) understanding the mycorrhizosphere will come from studying both internal host responses as well as external interactions, including those in the mycorrhosphere; and 4) there are significant experimental problems to overcome in studying the mycorrhizosphere, but the challenge is worth the effort and risk because the benefits could be tremendous. A better understanding of the mycorrhizosphere would allow effective management of microorganisms that could solve a number of unsolved plant growth and production problems.

LITERATURE CITED

