IMPROVED N$_2$ FIXATION IN 2,4-D TREATED WHEAT ROOTS ASSOCIATED WITH AZOSPIRILLUM L IPOFERUM: STUDIES OF COLONIZATION USING REPORTER GENES

SUNIETHA KATUPITIYA, PETER B. NEW, CLAUDINE ELMERICH and IVAN R. KENNEDY

Departments of Agricultural Chemistry and Soil Science and Microbiology, University of Sydney, Sydney, NSW 2006, Australia and Department of Biotechnology, Institut Pasteur, 28 Rue Du Dr Roux, 75724 Paris Cedex 15, France

Summary—Among several Azospirillum strains tested for N$_2$ fixation in association with wheat in a model system, 2 A. lipoferum strains (SpBr17 and 596) were found to be more efficient than the 8 other A. lipoferum and A. brasilense strains tested. Plants treated with low concentrations (0.7 µg ml$^{-1}$) of 2,4-dichlorophenoxyacetic acid (2,4-D) followed by inoculation supported larger acetylene reduction activity than plants treated only with bacteria. Three broad host range plasmids carrying lacZ, as a reporter gene, controlled by nifA, nodG and ntrC promoters were transferred to A. lipoferum SpBr17 and strain 596 by conjugation. All the transconjugants showed high β-galactosidase activity in the free-living condition. Studies on colonization of wheat roots using the SpBr17 nodG-lacZ gene fusion, which expressed the lacZ gene at the highest level, indicated the localization of bacteria on the young parts of roots as a thick coat. Counts of azospirilla on plant roots showed increased association of bacteria in 2,4-D treated plants.

INTRODUCTION

Members of the genus Azospirillum associate with plant roots and have been shown in some cases to improve the N nutrition of several agriculturally important crops (Kapulnik et al., 1981; Reyners and Vlassak, 1982). Upon inoculation, azospirilla can proliferate on roots and in some cases can apparently invade the internal parts of roots (Patriquin and Döbereiner, 1978; Umali-Garcia et al., 1980). Although little is known about the Azospirillum–host plant specificity, there are indications that some form of specificity of association may exist.

Treatment with concentrations of auxins has been shown to increase colonization and N$_2$ fixation of azospirilla in wheat (Tchan et al., 1991; Christiansen-Weniger, 1992; Kennedy and Tchan, 1992). A change of root morphology to nodule-like structures (para-nodules) has also been reported following the addition of auxin analogues. According to Sriskandarajah et al. (1993), these structures are colonized preferentially by A. brasilense (Sp7) relative to other parts of the roots and the higher nitrogenase activity associated with auxin treatment is suggested to be partly due to the development of a protected niche.

With the increasing interest of non-legume associations, studies have also focused on the colonization of roots by microorganisms. Techniques such as electron microscopy, use of antibiotic resistance markers and immunofluorescence have been used to study colonization. Recently, fusions of reporter genes associated with N$_2$ fixation gene promoters (nifA, nifH, nodG and ntrC) of A. brasilense have been prepared and these have been shown to be expressed under free-living conditions, more or less constitutively (nifA, nodG and ntrC) and under N$_2$-fixing conditions (Liang et al., 1991, 1993; Vieille and Elmerich, 1992). Such fusions provide a potential tool for studying the colonization. The reporter genes such as lacZ (β-galactosidase) (Boivin et al., 1990) with a promoter from rhizobia and uidA (β-glucuronidase) (Van de Broek et al., 1992) with promoters derived from Azospirillum have been used to study the expression of these promoters in root tissues after inoculation with appropriate fusions.

We have tested the N$_2$ fixation ability of several Azospirillum strains in association with wheat in the presence or absence of 2,4-dichlorophenoxyacetic acid (2,4-D). Root colonization of A. lipoferum strain SpBr17 was also studied by using the reporter gene lacZ fused with Azospirillum nodG promoter.

MATERIALS AND METHODS

Testing of different Azospirillum strains

In our experiment, 7 A. brasilense and 3 A. lipoferum strains (Table 1) were tested for N$_2$-fixing ability in association with wheat in the model system described by Zeman et al. (1992).

Plants were either treated with 0.7 µg ml$^{-1}$ of the auxin analogue 2,4-D or did not receive 2,4-D treatment. When the plants were 3 weeks old the acetylene reduction assay (ARA) was performed as described by Sriskandarajah et al. (1993) using a...
Shimadzu GC 8F gas chromatograph fitted with a flame ionization detector and a 1 m column of Porapak T.

**Conjugation of reporter genes to Azospirillum**

Fusions of the lacZ gene with different *Azospirillum* gene promoters such as *nifA, nodG* and *ntrC* were used. *Escherichia coli* strains (S17.1) carrying the plasmids (given in Table 1) were constructed at the Pasteur Institute, Paris. These plasmids were transferred to *A. lipoferum* strains SpBr17 and 596 in order to study colonization.

Conjugation was performed between *E. coli* S17.1 containing the plasmids and *A. lipoferum* as described by Simon et al. (1983). The donor strains of *E. coli* S17.1 were grown in Lura–Bertani broth supplemented with 5 µg tetracycline ml⁻¹. The recipients, *A. lipoferum* SpBr17 and 596, were grown in NB liquid medium supplemented with ammonium chloride (1 g l⁻¹). Conjugation was allowed to take place after mixing the donor and the recipient on nutrient agar. Transconjugants were selected on minimal lactate medium (Dreyfus et al., 1983), supplemented with ammonium chloride (1 g l⁻¹) and tetracycline (5 µg ml⁻¹).

The expression of the lacZ gene in transconjugants was measured using the ability to hydrolyse o-nitrophenyl-β-D-galactoside (ONPG) (Miller, 1972). Overnight grown liquid cultures of cells containing lacZ fusions were used to determine β-galactosidase activity. A sample of 1 ml from the grown culture was centrifuged and resuspended in the same volume of Z buffer (Miller, 1972); 100–200 µl of these suspensions (depending on the density) were brought to the total volume of 1 ml with Z buffer. Sodium dodecyl sulphate (1 drop 0.1% SDS in Z buffer) and chloroform (2 drops) were added to the cell suspensions and vortexed thoroughly. Samples were stabilized at 28°C for 15 min and then 100 µl of ONPG (4 µg ml⁻¹) was added to each sample. Tubes were kept at 28°C and the reaction was stopped by adding 250 µl of 1 M sodium carbonate when a yellow colour had developed. The samples were then centrifuged to remove cell debris and the intensity of the yellow colour was measured at 420 nm using a Beckman Du 64 spectrophotometer. The protein content of the samples were determined as described by Gogstad and Krutnes (1982) using BioRad protein assay dye reagent.

**Colonization of wheat roots**

Colonization of wheat roots was studied using strain SpBr17 containing *nodG–lacZ* fusion. *In situ* visualization of azospirilla bearing lacZ fusions was obtained by staining root pieces and transverse sections of roots with the chromogenic substrate of the β-galactosidase enzyme, 5-bromo-4-chloro-3-indolyl β-galactoside (X-gal).

Two weeks after inoculation, root pieces were taken from seedlings and stained using a modification of the protocol of Boivin et al. (1990) as described by Arène et al. (1994). Root segments were fixed in 1% glutaraldehyde solution and the β-galactosidase activity was revealed by staining with X-gal solution. After staining, specimens were washed twice in Z buffer followed by water and examined using a transmission light microscope (Olympus BHA).

Transverse sections (100 µm) of fresh roots embedded in dental wax were made using an Electron Microscopy Services OTS-300-03 oscillating tissue slicer and stained as above to study the internal colonization.

**Enumeration of azospirilla**

Bacteria associated with 2,4-D treated and untreated roots inoculated with SpBr17–*nodG–lacZ* and 596–*nodG–lacZ* were counted as described by Sriskandarajah et al. (1993) using the most probable number (MPN) technique. As the lacZ plasmid is tetracycline resistant, the medium used was NB supplemented with tetracycline (5 µg ml⁻¹). Numbers of azospirilla were determined using the Niftal MPN enumeration system (MS-Dos Version 1.0) (Dennett et al., 1990).

**RESULTS**

**ARA of Azospirillum strains**

ARA of different *A. brasilense* and *A. lipoferum* strains in association with wheat are given in Fig. 1. The 2,4-D treated plants always showed higher activity than untreated plants. Among the strains tested, 2 *A. lipoferum* strains, SpBr17 and 596, were shown to have the highest nitrogenase activity in association with wheat roots. As shown in Fig. 1, 2,4-D treated plants were up to 10 times more active than the untreated plants.

**Conjugation of lacZ plasmids to azospirilla**

The plasmids pAB576 (*nifA–lacZ*), pAB538 (*nodG–lacZ*) and pAB792 (*ntrC–lacZ*) were transferred by conjugation to *A. lipoferum* SpBr17 and 596. All the transconjugants showed considerable β-galactosidase activity under aerobic growth, whereas the
NZ fixation and colonization of wheat by *A. lipoferum* 

Recipient strains had very little activity. The strains carrying nodG-lacZ were found to be the most active (Table 2). Generally, the fusions of strain SpBr17 expressed the lacZ gene at a higher level than strain 596.

### Colonization of roots

**In situ** staining with X-gal, a chromogenic substrate of β-galactosidase, clearly indicated the presence of lacZ carrying *Azospirillum* cells on the surface of the roots by the blue-coloured staining (Fig. 2). The blue-stained azospirilla were clearly distinguishable from any background colour due to residual plant β-galactosidase. Fixing the root tissues with 1% glutaraldehyde reduced the background staining to a satisfactory level. The 2,4-D treated roots had much denser colonization than untreated plants. Bacteria were found mostly on the young parts of roots and the root surface just behind the tip which was coated with a thick cover (several cells thick) of azospirilla. Transverse sections of young roots clearly showed the presence of lacZ carrying azospirilla as a thick coat around the root (Fig. 2). There was no evidence of extensive internal colonization. However, some of the epidermal cells were seen to be filled with bacteria.

### Enumeration of azospirilla

The bacterial counts made on inoculated wheat roots indicated higher numbers of bacteria in roots treated with 2,4-D than in untreated roots (Fig. 3). Bacterial numbers associated with the 2,4-D treated plants were several times higher than those associated with untreated plants.

### DISCUSSION

Of the 10 *Azospirillum* strains tested, 2 strains of *A. lipoferum* (SpBr17 and 596) were found to be most effective for N₂ fixation in association with wheat. The differences of the nitrogenase activity associated with plants did not correlate with the nitrogenase activity of the strains alone *in vitro* (only some of the strains were tested). This indicated that there were differences in the ability of *Azospirillum* strains to associate with the roots of plant hosts and fix N. Although, little work has been done on azospirilla-host plant specificity, the basis for any such specificity by azospirilla in associating with the host plant is unknown.

The bacterial counts using the MPN technique provide clear evidence that the 2,4-D treated plants carried more associated azospirilla than the plants without 2,4-D. It has previously been reported by Sriskandarajah et al. (1993) that synthetic auxins such as 2,4-D and naphthaleneacetic acid at low concentrations enhance the colonization and N₂-fixing ability of *A. brasilense* Sp7 in association with wheat. In contrast to the findings of Sriskandarajah et al. (1993) with *A. brasilense* (Sp7), we did not observe large numbers of *A. lipoferum* strain SpBr17 associated with 2,4-D induced nodule-like structures (para-nodules). A dense layer of bacteria was observed covering the surface of the young parts of 2,4-D treated roots. Although the nitrogenase in the outermost cells of the bacterial layer would probably have been inactivated by the O₂ (2.5%) present in the assay vessel, the azospirilla near the rhizoplane may have been protected and active in reducing acetylene. The higher acetylene reduction in 2,4-D treated plants (Fig. 1) could be partly attributed to the higher numbers of azospirilla associated with the root systems of the treated plants, the exact mechanisms for the enhanced colonization and N₂ fixation resulting from the 2,4-D treatment are not yet clear. This effect could also be due to structural and metabolic changes occurring

---

**Table 2. β-Galactosidase activity of lacZ fusions of *A. lipoferum* strains SpBr17 and 596 (cultures were grown overnight in Nfb liquid medium supplemented with ammonia)**

<table>
<thead>
<tr>
<th>Strain</th>
<th>β-Galactosidase activity (Miller units mg⁻¹ protein min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>A. lipoferum</em></td>
<td></td>
</tr>
<tr>
<td>SpBr17 (wild type)</td>
<td>47 ± 6</td>
</tr>
<tr>
<td>SpBr17-nifA-lacZ</td>
<td>1737 ± 648</td>
</tr>
<tr>
<td>SpBr17-nodG-lacZ</td>
<td>3914 ± 1644</td>
</tr>
<tr>
<td>SpBr17-ntrC-lacZ</td>
<td>2344 ± 845</td>
</tr>
<tr>
<td><em>A. lipoferum</em></td>
<td></td>
</tr>
<tr>
<td>596 (wild type)</td>
<td>47 ± 8</td>
</tr>
<tr>
<td>596-nifA-lacZ</td>
<td>1089 ± 90</td>
</tr>
<tr>
<td>596-nodG-lacZ</td>
<td>3731 ± 188</td>
</tr>
<tr>
<td>596-ntrC-lacZ</td>
<td>1944 ± 214</td>
</tr>
</tbody>
</table>

---

**Fig. 1.** Acetylene reduction in 2,4-D treated and untreated wheat seedlings inoculated with different *A. brasilense* (Sp7, Cd, Sp245, Sp13, SpBr14, 576, Sp107) and *A. lipoferum* strains (Sp59b, SpBr17, 596). SEs are indicated on the graph.
Staining with X-gal, which becomes a blue colour when hydrolysed by the enzyme β-galactosidase, readily enabled visualization of Azospirillum cells bearing lacZ plasmid in the root system. This technique provides a simple and efficient means of recognition of bacteria in situ compared with several other techniques used to study the colonization. According to our observations, A. lipoferum strain SpBr17 mainly colonizes the surface of roots forming a dense layer. This effect was more pronounced at the young parts of the root just above the tip, indicating that a large proportion of the N₂ fixation may be associated with the young root tissues. There was no evidence to support the idea of extensive internal colonization of root tissues as observed with some other strains of Azospirillum (Patriquin and Dobereiner, 1978; Bashan and Levanony, 1988), although epidermal cells were occasionally colonized internally by azospirilla. Thus, our experiments suggest that different strains of azospirilla have different patterns of colonization, which may have different consequences for the N₂-fixing ability of the association.

Acknowledgements—The authors are grateful to Kate Gilchrist and Rosalind Deaker for their technical assistance. C. Elmerich wishes to acknowledge the receipt of travelling fellowships from the OECD, Agricultural Program (Paris) and the Grains Research and Development Corporation (GRDC) (Canberra) that facilitated this work. The research was supported by grants from the Australian Research Council (ARC) and the GRDC.

REFERENCES


Dewey B. L., Elmerich C. and Dobereiner J. (1993) Free living Rhizobium strain able to grow on N₂ as the sole nitrogen source. Applied and Environmental Microbiology 45, 711–713.


N$_2$ FIXATION (C$_2$H$_2$ REDUCTION) IN 2,4-DICHLORO-PHENOXYACETIC ACID (2,4-D) TREATED WHEAT INOCULATED WITH FREE-LIVING DIAZOTROPHS

Y. T. TCHAN* and A. M. M. ZEMAN*

Departments of Chemical Engineering and Agricultural Chemistry and Soil Science, University of Sydney, Sydney, 2006 NSW, Australia

Summary—N$_2$ fixation associated with 2,4-D-treated wheat seedlings was investigated using a number of free-living, non-associative, O$_2$- and acid-tolerant diazotrophs. Not all diazotrophs tested formed an N$_2$-fixing association. Even strains within one species behaved differently. Azospirillum was found to have a narrow pH and pO$_2$ range for nitrogenase activity (C$_2$H$_2$ reduction) in 2,4-D-treated wheat seedlings, whereas Derxia gummosa was capable of forming an effective N$_2$-fixing association under a wide range of pH and pO$_2$.

INTRODUCTION

Nitrogenase activity (C$_2$H$_2$ reduction) was found to be enhanced in 2,4-dichlorophenoxyacetic acid (2,4-D) treated wheat seedlings inoculated with Azospirillum over seedlings not treated with 2,4-D under carefully controlled reduced O$_2$ tension (Tchan et al., 1991; Zeman et al., 1992; Yu et al., 1993). In a review paper, the term para-nodule induced by the 2,4-D treatment was introduced to distinguish it from the naturally-occurring legume nodule (Tchan and Kennedy, 1990; see Kennedy et al., 1990). This model system (Zeman et al., 1991), however, only shows very low to negligible N$_2$ fixation (C$_2$H$_2$ reduction) under an O$_2$ tension > 0.04 atm (A. M. M. Zeman, unpubl. data). This restricts the usefulness of Azospirillum as a contributor to the N economy of the system under well-aerated soil.

Although the effectiveness of N$_2$ fixation in relation to pH has been reported (Döbereiner et al., 1976; Gibson et al., 1988), information regarding the performance of azospirilla and other free-living diazotrophs in an acid environment with 2,4-D-treated wheat seedlings is still lacking. The survival of the diazotrophs in the rhizosphere would determine the initial formation of an association with the host plant as well as the ability to fix N. There are several aerobic diazotrophs capable of fixing N under acid environments in the soil or in association with plants, such as Azotobacter beijerinckii (Tchan, 1953), Azotobacter paspali (Döbereiner, 1966; Döbereiner et al., 1972), Beijerinckia spp (Tchan, 1968; Becking, 1984) and Azospirillum amazonenese (Magalhaes et al., 1983). Furthermore, under reduced O$_2$ tensions the N$_2$ fixation of some of these organisms was improved (Becking, 1971; Spiff and Odu, 1973). Derxia is a soil diazotroph but has been isolated from roots of grasses (Campélo and Döbereiner, 1970). In pure culture, it fixes N at a range of pO$_2$ from atmospheric pressure to <0.02 atm. Its pH range extends from slightly less than 5.0 up to 9.0.

Also, Akao et al. (1991) showed that a non-nodulating soybean will form nodules with rhizobia when treated with 2,4-D. Some of these diazotrophs were used in an attempt to establish an N$_2$-fixing association with non-legumes treated with 2,4-D. Hence, we investigated the use of the free-living diazotrophs mentioned as well as the associative diazotroph, Azospirillum brasilense for their ability to form an effective N$_2$-fixing association using 2,4-D-treated and untreated wheat as the host plant under a wide range of O$_2$ tensions and pH. We also investigated whether 2,4-D treatment could break the barrier of specificity between A. paspali and Paspalum notatum (Döbereiner et al., 1972) and form an association with other species of Paspalum.

MATERIALS AND METHODS

Cultivation of seedlings

The method of Zeman et al. (1992) was adopted. Each treatment was replicated five times unless otherwise stated. Plant tubes were rotated three times a week in a controlled environment light cabinet with continuous lighting (200 µE m$^{-2}$ s$^{-1}$) and 18 and 23°C temperature cycles every 24 h.

Paspalum dilatatum seeds were surface sterilized by wetting with a 0.05% Tween 80 solution and vortexing for 30 s. The flask containing the seeds was placed under a vacuum and refilled with air three times. The seeds were then washed with water and sterilized as with wheat (Triticum aestivum cv. Miskle) was surface sterilized according to Zeman et al. (1992).
Preparation of hydroponic solution at different pH

Hydroponic solution (Zeman et al., 1992) was adjusted to the desired pH using diluted HCl. The pH was not adjusted during the experiment.

Acetylene reduction assay (ARA)

The method described in Zeman et al. (1992) was adopted with modifications. ARA flasks (30 ml McCartney bottles) containing 3 ml of Winogradsky’s mineral solution were stoppered with sterile rubber stoppers. The gas phase of the bottles was exchanged by evacuation and replaced with N2 at the pO2 indicated in 12-day-old seedlings. This was to minimize any unforeseen effect from pH on the C2H2 reduction of the association during the assay and minimize the carryover of soluble C that could be used during the ARA. The ARA flasks were placed in a shaking water bath at 30°C at 160 oscillations min⁻¹. Routinely, 500 µl of the gas phase was sampled at the times indicated in Fig. 1 or Tables 1 and 2 following injection of C2H2.

Diazotrophs

* A. chroococcum SU was recently isolated from a soil sample from the University of Sydney and D. gummosa SUT1 from tropical soil. The following cultures [listed in Thompson and Skerman (1979)] were obtained: A. beijerinckii WR 40 and A. beijerinckii WR 50 from Queensland University, A. vinelandii AVO3, A. paspali AX 52, Beijerinckia indica var. alba, B. derxii Q13 from the culture collection of Y. T. Tchan. All cultures were grown in N-free glucose mineral liquid medium (Tchan and Jensen, 1963). A. brasilense Sp7 ATCC 29145 (Sydney strain: isolated by Tchan from the original culture supplied by Dr A.H. Gibson of CSIRO, Canberra, Australia) was grown in N-free Na bicarbonate liquid medium (Tchan and Jensen, 1963).

Each value represents the mean of 5 replicates. Standard error of the mean is shown (±SE).

<table>
<thead>
<tr>
<th>pH</th>
<th>C2H2 formation (nmol plant⁻¹ 21 h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>Trace (7.02)</td>
</tr>
<tr>
<td>5.5</td>
<td>Trace</td>
</tr>
<tr>
<td>4.5</td>
<td>Trace</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pH</th>
<th>C2H2 formation (nmol plant⁻¹ 21 h⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
<td>16.6 (±5.0)</td>
</tr>
<tr>
<td>5.5</td>
<td>22 (±7.40)</td>
</tr>
<tr>
<td>4.5</td>
<td>20.38 (±6.85)</td>
</tr>
</tbody>
</table>

*This value was recorded with only 4 replicates. Standard error of the mean is shown (±SE). ARA was carried out in 12-day-old seedlings under varying O2 tensions, pH 6.5 and 5.5. Each point represents the mean value of 4 replicates. SEMs are shown.

Fig. 1: C2H2 formation of 2,4-D-treated wheat seedlings inoculated with D. gummosa under a range of O2 tensions. Seedlings were inoculated with 0.1 ml of an overnight culture of either A. brasilense or D. gummosa. ARA was carried out on 14-day-old seedlings under N2 at the O2 tension indicated. C2H2 was added (0.1 atm) and C2H2 reduction was assayed after 21 h incubation at 30°C under shaken conditions. Each point represents the mean value of 4 replicates. SEMs are shown.