Water deficit stress effects on N_2 fixation in cowpea inoculated with different *Bradyrhizobium* strains

M. V. B. Figueiredo1,4, H. A. Burity2, and F. P. de França3

1EMBRAPA-EPEAL Doutorado, IM/UFRJ, CP 699, CEP 57025.050 Maceio-AL, Brazil; 2EMBRAPA-IPA, CP 1022, CEP 50761.000 Recife-PE, Brazil; and 3EQ/CT-UFRJ, CP 6841, CEP 21949.900 Rio de Janeiro-RJ, Brazil. Received 3 October 1997, accepted 29 June 1998.

Figueiredo, M. V. B., Burity, H. A. and de França, F. P. 1998. *Water deficit stress effects on N_2 fixation in cowpea inoculated with different *Bradyrhizobium* strains*. Can. J. Plant Sci. 78: 577–582. The objectives of this experiment were to select strains of *Bradyrhizobium* sp. resistant to water stress, envisaging an increase in N_2 fixation in cowpea (*Vigna unguiculata* [L. Walp.]), and to verify the plant’s adaptive physiological responses to water stress. The experiment was carried out in greenhouse conditions using random complete blocks subdivided into plots adjusted to soil water potential levels of –6.0, –75.0, and –85.0 kPa, and sub-plots containing strains of *Bradyrhizobium* sp. (SEMIA 6145, 6086, 6002 and NFB 700), with four blocks. The soil was a Yellow Latosol with pH 6.3. The crop was cowpea cv. IPA 204. Stress was applied continuously beginning 15 d after planting, by the control of water potential through a porous cup. Various parameters were evaluated every 7 days, until final harvest at 45 d. There was significant interaction between *Bradyrhizobium* strains and water stress. At the more negative ψ_m, plants inoculated with the SEMIA 6145 had higher LHb concentration, ureide-N, w_m and root dry matter, forming associations of greater symbiotic efficiency, while plants inoculated with SEMIA 6086 were not resistant to stress. LHb concentration apparently was not inhibited at ψ_m –1.0 MPa in cowpea. The *Bradyrhizobium* strains may have affected the metabolism of N assimilation and/or transport.

Key words: *Bradyrhizobium*, N_2 fixation, porous cup, *Vigna unguiculata*, water stress, Yellow Latosol

Figueiredo, M. V. P., Burity, H. A. et de França, F. P. 1998. *Effets du stress de déficit hydrique sur la fixation de N_2 chez le dolique inoculé par diverses souches de *Bradyrhizobium***. Can. J. Plant Sci. 78: 577–582. L’objet de nos recherches était de trouver des souches de *Bradyrhizobium* sp. résistantes au stress hydrique dans la perspective d’un accroissement de la fixation de N_2 chez le dolique (*Vigna unguiculata* [L. Walp.]) et de vérifier les réactions d’adaptation physiologique de la culture au stress hydrique. L’expérience, réalisée en serre selon un dispositif en blocs aléatoires complets à quatre répétitions, comprenait quatre niveaux de potentiel hydrique du sol : –6.0, –75.0 et –85.0 kPa comme parcelles principales et quatre souches de rizobium SEMIA 6145, 6086, 6002 et NFB 700 comme sous-parcelles. Le sol utilisé était un latosol jaune de pH 6.3 et la culture le cultivar de dolique IPA 204. Le stress hydrique était appliqué en permanence dès le 15e jour après la germination par la régulation du potentiel hydrique au moyen d’une coupe poreuse. Divers paramètres étaient évalués tous les 7 jours jusqu’à la récolte à 45 d. On observait une interaction significative entre *Bradyrhizobium* strains et stress hydrique. Aux valeurs négatives les plus fortes de ψ_m, les plantes ensemencées avec l’inoculum SEMIA 6145 fournissaient une concentration de leghéminoglobine (LHb), une teneur en N sous forme uréide, un potentiel hydrique foliaire (w_m) plus élevé et une matière sèche racinaire plus abondante, formant des associations symbiotiques plus efficaces. Par comparaison, les plantes mises en présence de SEMIA 6086 ne résistaient pas au stress hydrique. La concentration de LHb n’était semblable-t-il pas inhibée au ψ_m de –1.0 Mpa chez le dolique. Les diverses souches de *Bradyrhizobium* peuvent avoir un effet sur le métabolisme de l’assimilation et/or du transport de l’azote.

Mots clés: *Bradyrhizobium*, fixation de N_2, porous cup, *Vigna unguiculata*, stress hydrique, latosol jaune

Water shortage is one of the greatest selective pressures in the evolution of plants, and their ability to survive during drought is a major determining factor in the distribution and productivity of cultivated plants (Boyer 1980). Drought can either weaken vital functions or stimulate adaptive reactions that enable plants to survive prolonged water deficits (Pimentel et al. 1990). While the effects of the environment on growth, development and production are evident, it is essential to evaluate the effects of these factors on the growth and physiology of species that are economically important (Perez 1995). Water deficiency affected N accumulation, suggesting that cowpea, although tolerant to prolonged drought, is quite susceptible to a lack of water during the phase approaching flowering (Venkateswarlu et al. 1989; Stamford et al. 1990). The possibility of selecting rhizobial strains applicable to cowpea for their ability to recover from water stress has been investigated (Walker and Miller 1986). However, the unspecificity of the strains and the occurrence of ineffective native strains in soils, limit the introduction of selected strains, thus reducing potential N_2 fixation by the cowpea. Nevertheless, the effect of water stress on the growth of the plant and fixation of N_2 must be evaluated in order to determine the extent to which it is possible to increase N_2 fixation through resistance to drought (Walker and Miller 1986).

Abbreviations: ψ_m, soil water potential; w_m, leaf water potential; N_2ase, nitrogenase; LHb, leghemoglobin

4To whom correspondence should be addressed: Rua Sá e Souza, 1020 / 1401, CEP 51030-060 Recife, PE, Brazil. E-mail: mbarreto@elogica.com.br.
The relation among water status of the plant, photosynthesis and N₂ fixation under water stress, and the changes in nodule morphology have been studied in some temperate legumes (Sprent 1981). However, tropical legumes grown in dry regions, have not received adequate attention in these studies. Even where information is available, the levels of stress are not clearly defined in terms of plant water status, which makes comparisons difficult among rhizobia cultures. According to Sprent (1981) and González et al. (1995), N₂ fixation in legumes requires that the soil be capable of supplying water and certain gases to the nodules and symbiont plant. Intermittent water supply may bring about temporary conditions of water excess or deficiency. Both situations can directly hinder the development of the crop and affect biological fixation of nitrogen, through influencing the physiological activities of microorganisms, as well as their survival. When there is excess water, N₂ fixation can be totally inhibited, which appears to be related to the inability of rhizobia cells to withstand physical-chemical and biological alteration caused by water variations (Osa-Afiana and Alexander 1982).

Reduction in nitrogenase activity in stressed plants has already been reported in different legumes by several writers (Huang et al. 1975; Finn and Brun 1980; Guerin et al. 1990). The leghemoglobin in nodules in stressed plants may have unusual influence and instability on nitrogenase activity, assisting the respiration of bacteroids (Sprent 1981). However, the mechanism by which water stress causes loss in N₂ fixation is still controversial.

The objectives of this study were to select strains of
Bradyrhizobium sp. resistant to water stress envisaging an increase in N₂ fixation in cowpea, and to verify the plant’s adaptive physiological responses to water stress.

MATERIALS AND METHODS

The experiment was carried out in pots using soil (0–20 cm) of a sandy loam Yellow Latosol (Jacomine et al. 1973) taken from the Araripina Experimental Station in the semi-arid region of Pernambuco State, Brazil. The soil was air dried, sieved (5.0 mm), corrected to pH 6.3 by the addition of calcium and magnesium oxides in the ratio 3:1, and autoclaved for 30 min at a temperature of 121°C and pressure of 101 kPa at 24-h intervals for 3 consecutive days. Fourteen kilograms of soil were used in each 15-L pot. Chemical and physical analysis of the soil was carried out at the Pernambuco enterprise of Agricultural and Livestock Research (Empresa Pernambucana de Pesquisa Agropecuária-IPA) in accordance with EMBRAPA (1979) methods (Table 1).

The cultivar used was cowpea (Vigna unguiculata [L.] Walp.) cv. IPA 204 (L. 1429) and the seeds were inoculated with four strains of
Bradyrhizobium culture (Table 2). The strains of
Bradyrhizobium sp. were purified (Vincent 1970) and replicated in duplicate into 125-mL Erlenmeyer flasks containing 25-mL of liquid mannitol yeast extract medium. All strains were incubated in a rotary agitator at 28°C for 72 h (SEMINA 6002 and NFB 700) or 144 h (SEMINA 6086 and 6145). After this period, the inoculum contained 10⁹ bacterial cells cm⁻³, evaluated by direct count in a Petroff-Hanser chamber, as well as by the count of colony-forming units by dilution and counting in Petri dishes.

Seeds of cowpea were sterilized (Vincent 1970) and sown five seeds per pot prior to inoculation with 5 mL pot⁻¹ of liquid culture of
Bradyrhizobium sp. After emergence three plants were left per pot. Hoagland and Arnon solution without N was applied weekly at a rate of 2 mL kg⁻¹ of soil.

Water stress treatments were applied by means of a porous cup arrangement similar to that described by Bataglia (1989). The auto-irrigation system (Fig. 1) consisted of a porous ceramic filter cup (diameter 3.5 cm; height 14 cm) placed in the center of the pot. The porous cup was connected to a constant level water reservoir through a flexible transparent tube (6 mm outside diameter and 3 mm inside diameter). The porous cup and tubing were filled with distilled deaerated water, avoiding the presence of air bubbles. The different soil water stress levels were accomplished by setting the vertical distances between the middle of the cups and the constant level of the water ψm reservoir at 15 cm (L1), 40 cm (L2), and 100 cm (L3) equivalent to –1.5 kPa (S1), –4.0 kPa (S2), and –10.0 kPa (S3), representing the ψm values at the porous cup walls, and consequently, the soil water ψm when in equilibrium. As the plant roots absorbed water, a potential gradient developed between the bulk soil and the surface of the cup, inducing water flow from cup to soil.

Water stress was applied beginning at 15 d after germination, and sampling was carried out every 7 d to evaluate the following parameters: leaf water potential (ψw) (PMS Instrument Company, Carvalho, OR, USA, according to Scholander et al. [1964] readings were taken from 09:00 to 10:00 h); soil water potential (ψm) using a tensiometer (Soil Moisture, mod. 2725) (the readings were taken daily at 10:00 h, throughout the entire drought period); and air relative humidity and temperature using a thermohydrograph.

The plants were harvested 45 d after germination. Shoot xylem sap was exuded by pressurization using the Scholander chamber, collected in calibrated microcapillaries, and stored at –20°C until assayed; ureide-N concentration of the sap was colorimetrically analyzed according to Vogels and van der Drift (1970); LHb concentration in nodules was assayed spectrophotometrically (540 nm) using Drabkin solution as “blank” according to Wilson and Reisenauer (1963); and Nₐse activity in nodulated roots was determined by GC 30.5 chromatography analysis, using a flame ionization detector and a Poropak N column, measuring ethylene production after incubation of nodulated

Table 1. Chemical and physical characteristics of Yellow Latosol soil

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (water)</td>
<td>4.8</td>
</tr>
<tr>
<td>Ca²⁺ (mmol kg⁻¹)</td>
<td>7.0</td>
</tr>
<tr>
<td>Mg²⁺ (mmol kg⁻¹)</td>
<td>4.0</td>
</tr>
<tr>
<td>K⁺ (mmol kg⁻¹)</td>
<td>0.7</td>
</tr>
<tr>
<td>Na⁺ (mmol kg⁻¹)</td>
<td>0.4</td>
</tr>
<tr>
<td>Al³⁺ (mmol kg⁻¹)</td>
<td>3.0</td>
</tr>
<tr>
<td>P (mg kg⁻¹)</td>
<td>6.1</td>
</tr>
<tr>
<td>N (g kg⁻¹)</td>
<td>0.6</td>
</tr>
<tr>
<td>Clay (g kg⁻¹)</td>
<td>190</td>
</tr>
<tr>
<td>Silt (g kg⁻¹)</td>
<td>50</td>
</tr>
<tr>
<td>Fine sand (g kg⁻¹)</td>
<td>90</td>
</tr>
<tr>
<td>Coarse sand (g kg⁻¹)</td>
<td>670</td>
</tr>
<tr>
<td>Porosity (m³ m⁻³)</td>
<td>493</td>
</tr>
<tr>
<td>Particle density (kg m⁻³)</td>
<td>2650</td>
</tr>
<tr>
<td>Bulk density (kg m⁻³)</td>
<td>1420</td>
</tr>
</tbody>
</table>

For personal use only.
roots in a sealed flask under an atmosphere containing C₂H₂ (10% vol/vol) (Hardy et al. 1968). Leaf area was determined using a portable area meter (model L1 3000, LI COR, Lincoln, NE, USA). Other measurements included: specific leaf area, shoot, nodule, and root dry weights (65°C for 72 h) and shoot/root ratio. Total N was determined using a Tecator 1030 auto-analyser by the Kjeldahl method (Bremner 1965).

The experimental design was a random complete block with subdivided plots, each main plot containing different water stress levels, one without stress (control S1) and two with stress (S2 and S3), divided in subplots containing the various Bradyrhizobium strains (SEMIA 6145, 6086, 6002, and NFB 700) with four blocks. All data were subjected to analysis of variance ($P < 0.01$) in accordance with the experimental layout adopted (Steel and Torrie 1960). Differences among treatment means were determined by Tukey’s test ($P < 0.05$).

RESULTS AND DISCUSSION

The Impact of Water Stress on Physiological Processes, Nodulation and N₂ Fixation

Soils varied in water potential (ψ_m) from –6.0 kPa (S1), –70.0 kPa (S2) and in excess of –85.0 kPa (S3, the exact value could not be measured due to the limited range of the tensiometer) (Fig. 2). There was significant interaction between Bradyrhizobium strains and water stress level in regard to our measured parameters (leaf water potential, nodule numbers, nodule dry matter, nitrogenase activity, nitrogenase specific activity, N accumulation, leghemoglobin, ureide-N, shoot and root dry matter, leaf area, specific leaf area and shoot/root ratio), except for N content.

At the lowest ψ_m (S3), the plants inoculated with strain SEMIA 6145 showed higher leaf water potential (ψ_w) during stress, than two of the three other strains. Studies carried out by Turk et al. (1980) on cowpea and González et al. (1995) on soybean showed ψ_w of –1.2 MPa with values similar to results shown in Table 3.

Lowering soil ψ_m reduced ($P < 0.05$) the efficiency of the N₂ fixation process (Table 3). Water stress reduced ($P < 0.05$) N₂ase activity and presented a correlation between N₂ase activity and ψ_w ($r = 0.63^{**}$), as well as, a reduction in the number and weight of nodules, suggesting that ψ_w is related to N₂ fixation by the plant.

The S2 treatment did not show a significant difference ($P < 0.05$) in nodule dry matter (Table 3) among the strains studied. However, in the S3 treatment, plants inoculated with SEMIA 6086 were not resistant to water stress.

N₂ase activity per gram of nodule (specific activity) is an important indicator of the N assimilatory efficiency. Extremely low values of specific N₂ase activity were observed (Table 3). At the most negative ψ_m, plants inoculated with SEMIA 6086 did not nodulate. With the application of stress, total N accumulated in the shoot, which represents a measure of the N fixed, was highly affected by water deficiency (Table 4). The negative effects on the metabolism of N₂ assimilation occurred every time ψ_w fell below –0.8 MPa (Tables 3 and 4), in agreement with the work of Huang et al. (1975), Stamford et al. (1990), and
In each column, means (4 replicates) followed by the same letter do not differ statistically from each other at a–c

N2ase activity was low (ε) that changes in N2ase can be attributed to declining LHb. Most negative small in relation to the decreases on the N2ase activity at the decreased with increasing stress, although the reduction was decreased with increasing stress, although the reduction was

SEMIA 6145 and NFB 700 were superior to the others Nilsen (1995). Among the Bradyrhizobium strains studied, SEMIA 6145 and NFB 700 were superior to the others (P < 0.05) in their resistance to water stress.

There was significant interaction between Bradyrhizobium strains and water stress in the LHb concentration (Table 4), and the greatest concentration in nodules was produced by SEMIA 6145. This increase was proportional to the greater N2 fixation by this strain. LHb concentration decreased with increasing stress, although the reduction was small in relation to the decreases on the N2ase activity at the most negative ψm (S3).

In the present study, the correlation between LHb and N2ase activity was low (r = 0.60**). It is, therefore, unlikely that changes in N2ase can be attributed to declining LHb. One theory supported by the data of Guerin et al. (1991) and Irigoyen et al. (1992), is that LHb concentration may decline significantly during water stress. Results of the present study suggest that when water stress was applied gradually, the LHb concentration apparently was not inhibited at ψm = –1.0 MPa in cowpea (Table 3), at the most negative ψm (S3). Similar results were found by González et al. (1995) studying the role of Sucrose synthase in the response of soybean (Glycine max) nodules to drought.

An alternative measure of N2 fixation is based on the concentration of ureide-N where it can be clearly observed that water stress reduced ureide concentration. Plants inoculated with SEMIA 6145 had higher ureide-N concentration than those inoculated with Bradyrhizobium strains, this strain again showed superiority to other strains at the lowest ψm (S3) (Table 4). This strain was also shown to induce higher ureide concentration in soybean (Neves et al. 1985). This suggests that strain SEMIA 6145 may affect the metabolism of N assimilation and/or transport. The ureide concentration of xylem was positively correlated with N2ase activity (ε) respectively. NS, not significant.

Table 3. Leaf water potential (ψm), nodule number, nodule dry matter, N2ase activity, and N2ase specific activity in cowpea inoculated with four strains of Bradyrhizobium sp. at different levels of water stress

<table>
<thead>
<tr>
<th>Strains</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMIA 6145</td>
<td>–0.50a</td>
<td>–0.82c</td>
<td>–1.01a</td>
<td>14.01a</td>
<td>3.40a</td>
<td>2.80a</td>
<td>544.2a</td>
<td>80.5a</td>
<td>25.9a</td>
</tr>
<tr>
<td>SEMIA 6086</td>
<td>–0.46a</td>
<td>–0.78bc</td>
<td>–1.08b</td>
<td>13.68a</td>
<td>4.13a</td>
<td>0.70b</td>
<td>443.8c</td>
<td>63.6a</td>
<td>0.0b</td>
</tr>
<tr>
<td>SEMIA 6002</td>
<td>–0.50a</td>
<td>–0.74ab</td>
<td>–1.08b</td>
<td>2.86b</td>
<td>1.31a</td>
<td>2.00b</td>
<td>486.7b</td>
<td>67.8a</td>
<td>14.9a</td>
</tr>
<tr>
<td>NFB 700</td>
<td>–0.48a</td>
<td>–0.83c</td>
<td>–1.04ab</td>
<td>13.51a</td>
<td>4.46a</td>
<td>3.35a</td>
<td>493.8b</td>
<td>71.0a</td>
<td>23.8a</td>
</tr>
</tbody>
</table>

F(plot) | 2336.91** | 867.95** | 1810.44** | 257.54** | 212.50** |
F(subplot) | 6.20** | 178.87** | 248.54** | 119.86** | 103.22** |
F(interaction)| 2.33* | 66.85** | 148.11** | 112.52** | 45.32** |
F(subplot) | 2336.91** | 867.95** | 1810.44** | 257.54** | 212.50** |
F(plot) | 6.20** | 178.87** | 248.54** | 119.86** | 103.22** |
F(interaction)| 2.33* | 66.85** | 148.11** | 112.52** | 45.32** |

% CV (plot) | 3.31 | 13.15 | 14.18 | 46.71 | 35.98 |
% CV (subplot)| 5.48 | 17.40 | 12.52 | 20.83 | 22.21 |

*,**Significant at P < 0.05 and P < 0.01 respectively.
*S1 –6.0 kPa; S2 –70.0 kPa; S3 excess – 85.0 kPa.
*a–c In each column, means (4 replicates) followed by the same letter do not differ statistically from each other at P < 0.05 according to Tukey’s test.

Table 4. Nitrogen accumulation, leghemoglobin (LHb), ureide-N and N content in cowpea inoculated with four strains of Bradyrhizobium sp. at different levels of water stress

<table>
<thead>
<tr>
<th>Strains</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMIA 6145</td>
<td>551a</td>
<td>100a</td>
<td>76a</td>
<td>27.40a</td>
<td>23.00a</td>
<td>22.00a</td>
<td>5.6a</td>
<td>4.5a</td>
<td>3.6a</td>
</tr>
<tr>
<td>SEMIA 6086</td>
<td>367c</td>
<td>61c</td>
<td>36c</td>
<td>16.82b</td>
<td>16.10b</td>
<td>0.00c</td>
<td>3.6b</td>
<td>2.8b</td>
<td>2.6bc</td>
</tr>
<tr>
<td>SEMIA 6002</td>
<td>454b</td>
<td>74b</td>
<td>52b</td>
<td>26.43a</td>
<td>21.62ab</td>
<td>15.87b</td>
<td>4.0bc</td>
<td>4.0a</td>
<td>3.0ab</td>
</tr>
<tr>
<td>NFB 700</td>
<td>539a</td>
<td>99a</td>
<td>71a</td>
<td>25.22a</td>
<td>22.59ab</td>
<td>19.94ab</td>
<td>4.9ab</td>
<td>4.3a</td>
<td>3.2ab</td>
</tr>
</tbody>
</table>

F(plot) | 9515.85** | 34.67** | 70.65** | 5.93* |
F(subplot) | 2221.93** | 116.45**| 58.91** | 41.51**|
F(interaction)| 1138.11**| 5.58** | 2.33** | 1.41NS|
% CV (plot) | 5.08 | 8.36 | 9.39 | 9.75 |
% CV (subplot)| 3.15 | 15.87 | 11.30 | 6.84 |

*,**Significant at P < 0.05 and P < 0.01 respectively. NS, not significant.
*S1 –6.0 kPa; S2 –70.0 kPa; S3 excess – 85.0 kPa.
*x = average.
*a–c In each column, means (4 replicates) followed by the same letter do not differ statistically from each other at P < 0.05 according to Tukey’s test.
Table 5. Shoot and root dry matter, leaf area, specific leaf area and shoot/root ratio in cowpea inoculated with four strains of *Bradyrhizobium* sp. at different levels of water stress

<table>
<thead>
<tr>
<th>Strains</th>
<th>Shoot dry matter (g pot⁻¹)</th>
<th>Root dry matter (g pot⁻¹)</th>
<th>Leaf area (cm²)</th>
<th>Specific leaf area (cm² g⁻¹)</th>
<th>Shoot/root ratio (g pot⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S1</td>
<td>S2</td>
<td>S3</td>
<td>S1</td>
<td>S2</td>
</tr>
<tr>
<td>SEMIA 6145</td>
<td>22.34</td>
<td>3.84</td>
<td>2.70</td>
<td>9.26</td>
<td>3.15</td>
</tr>
<tr>
<td>SEMIA 6086</td>
<td>15.84</td>
<td>2.57</td>
<td>1.88</td>
<td>8.92</td>
<td>1.68</td>
</tr>
<tr>
<td>SEMIA 6002</td>
<td>19.31</td>
<td>2.81</td>
<td>1.88</td>
<td>9.13</td>
<td>1.61</td>
</tr>
<tr>
<td>NFB 700</td>
<td>21.84</td>
<td>3.68</td>
<td>2.52</td>
<td>9.22</td>
<td>2.75</td>
</tr>
</tbody>
</table>

**Significant at *P* < 0.01.

α–d In each column, means (4 replicates) followed by the same letter do not differ statistically from each other, at *P* < 0.05, according to Tukey's test.
withstand water stress. *Bradyrhizobium* strains may have affected the metabolism of N assimilation and/or transport. Water stress applied by a porous cup method strongly influenced N₂ fixation, but the LHB concentration apparently was not inhibited at \(\psi_w = 1.0 \) MPa in cowpea.

ACKNOWLEDGMENTS

The authors are grateful to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico do Brasil) for financial support.

