Flexible Community Structure Correlates with Stable Community Function in Methanogenic Bioreactor Communities Perturbed by Glucose

ANA S. FERNANDEZ, 1,2† SYED A. HASHSHAM, 1,3 SHERRY L. DOLLHOPE, 1,3 LUTGARDE RASKIN, 5 OLGA GLAGOLEVA, 1,4 FRANK B. DAZZO, 1,4 ROBERT F. HICKEY, 1,3,6 CRAIG S. CRIDDLE, 1,3,4† AND JAMES M. TIEDJE 1,4*

Center for Microbial Ecology, 1 Department of Civil and Environmental Engineering, 3 and Department of Microbiology, 5 Michigan State University, East Lansing, Michigan 48824; Cátedra de Microbiología, Facultad de Química, Montevideo, Uruguay; 2 Department of Civil Engineering, Newmark Civil Engineering Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 2; and EFX Systems, Lansing, Michigan 48910 6

Received 1 February 2000/Accepted 29 May 2000

Methanogenic bioreactor communities were used as model ecosystems to evaluate the relationship between functional stability and community structure. Replicated methanogenic bioreactor communities with two different community structures were established. The effect of a substrate loading shock on population dynamics in each microbial community was examined by using morphological analysis, small-subunit (SSU) rRNA oligonucleotide probes, amplified ribosomal DNA (rDNA) restriction analysis (ARDRA), and partial sequencing of SSU rDNA clones. One set of replicated communities, designated the high-spirochete (HS) set, was characterized by good replicability, a high proportion of spiral and short thin rod morphotypes, a dominance of spirochete-related SSU rDNA genes, and a high percentage of Methanosarcina-related SSU rRNA. The second set of communities, designated the low-spirochete (LS) set, was characterized by incomplete replicability, higher morphotype diversity dominated by coccis, a predominance of Streptococcus-related and deeply branching Spirochaetales-related SSU rDNA genes, and a high percentage of Methanoseta-related SSU rRNA. In the HS communities, glucose perturbation caused a dramatic shift in the relative abundance of fermentative bacteria, with temporary displacement of spirochete-related ribotypes by Eubacterium-related ribotypes, followed by a return to the preperturbation community structure. The LS communities were less perturbed, with Streptococcus-related organisms remaining prevalent after the glucose shock, although changes in the relative abundance of minor members were detected by morphotype analysis. A companion paper demonstrates that the more stable LS communities were less functionally stable than the HS communities (S. A. Hashsham, A. S. Fernandez, S. L. Dollhopf, F. B. Dazzo, R. F. Hickey, J. M. Tiedje, and C. S. Criddle, Appl. Environ. Microbiol. 66:4050–4057, 2000).

Design and operation of bioreactors for waste management are an exercise in ecosystem management. Bioreactor communities contain dozens of interacting microbial populations, even when a single substrate is provided. Improved design and management of such communities depend upon the formulation of experimentally validated ecological concepts. Not surprisingly, much of the engineering design of complex bioreactors has been empirical, and low applied organic loading rates and long residence times have been used to avoid failure (27). More fundamental approaches group populations with similar functions into guilds. Ecological models are formulated by assigning kinetic parameters to each guild and defining the electron and energy flow between the guilds. Such models are useful for design and simulation under normal operating conditions, but their utility for fluctuating conditions is less clear (14). Competition among species for substrates, acid tolerance, syntrophic interactions, and other physiological properties of bacterial populations that lead to rapid changes in bacterial community composition control the reactions of bioreactors to fluctuating conditions. Some models that try to account for these dynamics have been proposed (14, 15, 24), but there is uncertainty in these models because of the presence of minority community members that may become dominant when operational parameters change.

Recently developed molecular techniques in microbial ecology provide an opportunity to link the microbial community structure to the functional attributes of wastewater treatment, making the formulation of more sophisticated models feasible (1, 13). Many previous studies of anaerobic bioreactor communities have used small-subunit (SSU) rRNA probes to investigate competition between methanogens and sulfidogens, the role of sulfate-reducing bacteria (SRB) as syntrophic organisms, and the effects of substrate composition and mixing regimes on various syntrophic and methanogenic populations (9, 19, 20). Robust tools of computer-assisted microscopy and image analysis have also been developed recently, making it possible to rapidly analyze the morphological diversity of complex microbial communities at frequent sampling points and thereby detect dynamic shifts in community structure with high sensitivity, precision, and accuracy (12; http://macorb.uthscsa.edu/dig/itdesc.html). This paper focuses on the ecological
shifts in the community structure of glucose-fed methanogenic bioreactor communities following the application of a large substrate shock load. We used several complimentary methods to dissect and compare these communities before the perturbation, and we present a conceptual model of community structure for each. We also describe changes in community structure following the glucose shock and contrast the types of community shifts observed. A companion paper describes the functional response of these same communities and demonstrates that they metabolized glucose by different pathways. One set of communities metabolized glucose by several pathways in parallel (glucose to acetate, glucose to butyrate, etc.) and exhibited rapid recovery to preperturbation conditions. A second set of communities processed glucose in a serial manner (glucose to lactate to butyrate to acetate) and recovered much more slowly to preperturbation conditions (11). Paradoxically, communities with a more stable community structure were less stable functionally, suggesting that an flexible community structure may be associated with greater functional instability.

MATERIALS AND METHODS

Bioreactor design, operation, and replication. Eight continuously stirred methanogenic bioreactors were operated at 35°C with a 16-day residence time. The reactors (designated the high-spirochete [HS] set) were inoculated with fluid from a 16-liter anaerobic digester. The libraries from the bacterial biovolumes that were measured spectrophotometrically at 260 nm and by electrophoresis through a 10% polyacrylamide gel. Quantitative rRNA membrane hybridizations were performed as previously described by Raskin et al. (19). The following reference organisms (and probes) were used: Desulfovibrio africanus (S-D-Bact-0338-a-A-18), S-F-Dsv-0867-a-A-16, Methanosarcina strain WH2 (S-G-Msar-0821-a-A-22), M. m海量ardiae (S-G-Msar-0821-a-A-22), Methanoseta concili

RESULTS AND DISCUSSION

Preperturbation community structure. Both the HS and LS sets of reactors performed uniformly before the glucose shock, indicating a replication of function (11). Immediately before the glucose shock (day 0), microbial community structure and the extent of community replication were evaluated by morphological analysis. The eight reactors segregated into two groups: (i) Morphological analysis. Bioreactor community samples were immobilized on agarose-coated slides, examined by phase-contrast microscopy, and analyzed by confocal laser scanning microscopy (CLSM) and morphological analysis. Coated slides were prepared as described by Pfennig and Wagener (16) except that washed and autoclaved Boehringer Mannheim LE agarose (1.6%, wt/vol) was used instead of agar. Freshly collected samples were dispersed by multiple, rapid passages through a 100-μm mesh. The samples were imaged by using CLSM and confocal laser scanning microscopy.

Amplified ribosomal DNA restriction analysis (AR德拉). Samples (10 ml) were taken on days 0 and 8 for both reactor sets, on day 16 for the HS reactor, and on day 24 for one of the HS reactors (reactor 8). DNA extraction, amplification of bacterial SSU rRNA DNA (rDNA), cloning, and restriction digestion were performed as previously described (6, 13). Each restriction pattern was defined as an operational unit (OTU). Dominant OTUs were partially sequenced (400 bp), and the sequence was analyzed as described previously (6), except that sequence data alignment was performed with the CLUSTAL W software package (28) and was corrected by manual inspection. A phylogenetic tree was constructed by the neighbor-joining method (22) with the PHYLIP 3.5c software package and the Jukes-Cantor distance model (5). Bootstrap resampling analysis for 100 replicates was performed to estimate the confidence of the tree topology. Functional instability. A flexible community structure may be associated with greater functional instability.
FIG. 1. Replication of pre-perturbation community structure in the eight bioreactors: community morphotype frequency and proportional biovolume calculated by computer-assisted microscopy and image analysis. Some of the single thin rods exhibited autofluorescence emission at 420 nm. The LS reactors were reactors 1 through 4, and the HS reactors were reactors 5 through 8.
occurred in 5% of the phase-contrast micrographs of the HS reactor samples and in none of the LS reactor samples.

Computation of biovolumes significantly altered the picture of community structure for all bioreactors, with greater recognition of the significant biomass contributed by less frequent morphotypes to community structure (Fig. 1). Although the smaller morphotypes occurred more frequently than the larger morphotypes, the larger biovolumes of the some of the rare morphotypes made their contributions to the community structure significant. This is further demonstrated by comparison of the J evenness community index (H' / H'_{max}) for all eight bioreactors when either proportional biovolume or morphotype frequency is used. The evenness in distribution of morphotypes for all eight reactors was higher when it was based on biovolumes (mean $J = 0.81$) than when it was based on frequencies (mean $J = 0.65$). The mean biovolume per cell for the 18 different morphotypes (in cubic micrometers per cell; $n = 100$ cells/morphotype) varied considerably, as follows: short thin rods, 0.3; spirals, 0.4; small cocci in clusters, 0.5; single small cocci, 1.1; small clubs, 1.6; straight filaments, 2.0; rods in chains, 2.2; curved rods, 2.7; pseudosarcinae, 4.1; large thick rods, 4.2; irregular rods, 7.6; coiled filaments, 8.4; prosthecates, 9.2; large cocci in chains, 19.0; large clubs, 20.9; ellipsoids, 21.9; ovoids with a refractile line, 22.5; and ovoids without a refractile line, 42.1.

Morphotype diversity calculated as Shannon-Weiner indices based on morphotype frequency showed that the HS set was more diverse ($H' = 1.72 \pm 0.18$) than the HS set ($H' = 1.33 \pm 0.22$) before the perturbation. The Mann-Witney test statistic indicated that these mean H' values differ at the 95% confidence level ($P = 0.0304$).

(ii) ARDRA. The bacterial component of microbial community structure was successfully replicated at the ribotype level in the HS set but was only partially replicated in the LS set. As shown in Fig. 3B, two OTUs—HS I and HS II—dominated all four HS communities (reactors 5 through 8). Partial sequences for HS I and HS II were identical and clustered with *Spirochaeta caldaria* and other freshwater spirochetes (Fig. 4). These data suggest that the bacterial component of the HS communities was dominated by spirochetes. This is consistent with the prevalence of spiral cells in the morphotype analysis and confirms that the large number of *Spirochaeta*-related clones obtained was not a PCR or cloning artifact. The other numerically dominant morphotype in the HS communities, short straight rods, was F$_{420}$ autofluorescent (Fig. 1 and 2), indicating that this morphotype was a methanogen that would not be detected in the *Bacteria*-specific ARDRA.

Community structure was not as well replicated for the LS reactor set at the ribotype level (Fig. 3B). This was indicated by variability in the frequency of the dominant OTUs (LS I, LS II, and LS III). None of these OTUs was detected in all four reactors. The distribution of OTUs demonstrated that the LS set contained two community types. Reactors 1 and 3 were dominated by LS II and LS III, while reactors 2 and 4 were more diverse and LS I was the dominant ribotype. The partial sequence LS I clustered within a deeply branching group of the order *Spirochaetales* that contains free-living, wall-less strains reported to exhibit pleomorphic coccus and budding morphol-
FIG. 3. Responses of the HS (A and B) and LS (C and D) communities to the glucose perturbation. (A and C) Morphotype frequency and proportional community similarity in reactor 7 (A) and reactor 1 (C). (B and D) ARDRA of the reactor communities 0, 8, and 24 days after the perturbation. Only reactor 8 was analyzed on day 24. Unique OTUs were defined as those that occurred once in each clone library (e.g., they were observed only once throughout the entire study in each reactor set). Species names indicate the most closely related known organisms. Percent similarities are indicated in parentheses.
methods indicated that the LS set was more diverse than the diversity present in a complex microbial community, both nor morphological analysis may be capable of detecting all of known relative, respectively (Fig. 1). In light of the fact that LS I's closest bioreactors at relative frequencies of only 10.9 and 12.4%, SSU rRNA sequences, spiral morphotypes occurred in these Spirochaeta I in reactors 2 and 4 was distantly related to other Spirochaeta sp. strain Antarctic, lacks the expected spiral shape but instead is classified as another mor-
photype (possibly single cocci) by microscopic analysis. This serves as a clear example of how morphological and ribotype analyses can work together to reveal features of microbial community structure that otherwise remain obscure when either approach is used alone.

Before the perturbation, the HS set was uniformly domi-

nated by spirochetes while the LS set was more variable, with a greater contribution from infrequent and unique OTUs (Fig. 1 and 3B). Shannon's diversity index based on OTU frequency illustrates that the LS set was more diverse (H' = 2.01 ± 0.31) than the HS set (H' = 1.32 ± 0.41). Although neither ARDRA nor morphological analysis may be capable of detecting all of the diversity present in a complex microbial community, both methods indicated that the LS set was more diverse than the

![Phylogram of the dominant SSU rDNA clones from the HS and LS communities created from analysis of 330 nucleotides of the 16S rRNA gene corresponding to positions 121 to 451 of Escherichia coli. Bootstrap values from 100 replicates are shown for each node. Values less than 50 are not shown. The scale bar represents a 10% estimated difference in nucleotide sequence. Clones obtained from the reactors are in boldface. The EMBL accession number for the Spirochaeta sp. from termite hindgut is X89048.](image)

![Relative abundances of methanogen-related SSU rRNA in LS reactors 1 and 2 and HS reactors 6 and 7 on day 0 determined by SSU rRNA membrane hybridization to oligonucleotide probes. The abundance of each group is expressed as a percentage of the total amount of methanogen-related SSU rRNA detected by all of the methanogen-specific probes used.](image)
(i) short, thin, straight rods; (ii) thicker, longer rods with an irregular axis; and (iii) aggregates of closely associated pseudosarcina units resembling Methanosarcina species cells (29) (Fig. 2). The latter aggregates were various sizes and occurred at a frequency of one aggregate per 20 microscopic fields of view. Several morphotypes of F_420 fluorescent cells were present in the LS communities; these morphotypes included short thin rods, rods in chains, cocci, and ovoids with a refractile line. Aggregates of autofluorescent cells resembling Methanosarcina species cells were not observed in the LS communities, which is consistent with the very small amount of Methanosarcina-related SSU rRNA detected in reactors 1 and 2.

Syntrophic propionate and butyrate oxidizer rRNA was detected at low levels in all of the reactors sampled. The levels varied between 2 and 4% of the rRNA detected with general bacterial probe S-D-Bact-0338-a-A-18 (data not shown). SRB-related rRNA was present in both sets of reactors at levels between 6 and 15% of the Bacteria rRNA. Desulfovibrio-related rRNA (S-F-Dsv-0687-a-A-16) was the most abundant rRNA in all reactors (the signals were 5 to 6 times greater than the signals with probes S-G-Dbsm-0804-a-A-18 and S-G-Dsbb-0660-a-A-20) (data not shown). No significant differences were detected between the two sets of reactors for any of the syntrophic bacterium- or SRB-targeted probes.

(iv) Summary. All eight reactors performed uniformly for 2 weeks before the disturbance (11), indicating that there was replication of function without replication of community structure. We have previously described a similar situation for a glucose-fed bioreactor that experienced a shift in community structure by ARDRA (Fig. 3). The fermentation products of strain O94 are mainly butyrate and acetate (data not shown), suggesting that HS III was responsible for the accumulation of these products. This metabolism was important in the fermentation of the excess glucose in the HS reactors, with over 30% of the electron equivalents from glucose converted to butyrate (11). Morphological analysis of reactors 6 and 7 supported the ARDRA data and allowed rapid assessment of the change in community structure at frequent intervals after the glucose perturbation, which was not possible with ARDRA. A rapid and transient increase in the proportion of thick rods was highly correlated with the appearance of butyrate in the reactor (Fig. 3A) (11). These rods were very similar in appearance to strain O94 cells and eventually produced refractile endospores (data not shown). Although fluorescent in situ hybridization was not performed, morphological analysis gave quantitative results that confirmed the results of ARDRA, which is more qualitative and subject to a number of biases (25, 31).

Both morphological and rDNA analyses indicated that the HS reactor communities recovered between 16 and 24 days after the glucose shock. The proportional community similarity index based on a comparison of morphotype frequencies in communities sampled at time t relative to the frequencies at time zero decreased 53% after the perturbation and then increased steadily to 90% by day 24 in reactor 7 (Fig. 3A). A similar dramatic decline occurred in HS reactor 6, and there was a return to 93% proportional similarity by day 16 (data not shown). Spiral-shaped organisms and thick rods also returned to their preperturbation frequency by this time. In addition, the proportions of the spirochete-related OTUs HS I and HS II increased between day 8 and day 16 (data not shown). By day 24, ARDRA analysis of reactor 8 indicated that HS I and HS II accounted for 78% of the 40 clones analyzed, compared to 70% on day 0 (Fig. 3B). Functional parameters also returned to the preperturbation state (11).

(ii) LS reactor set. A distinctly different response was observed in the LS reactor set. For three of the four reactors, glucose was first fermented to lactate and then converted to butyrate and finally to acetate. Propionate appeared later but was present at low concentrations (11). In reactors 1 through 3, Streptococcus- and Clostridium-related OTUs were predominant following the glucose shock. The proportions of unique OTUs and low-frequency morphotypes also increased (Fig. 3C and D). An increase in the proportion of minor morphotypes and OTU diversity suggests that many Bacteria and Archaea populations were favored by the glucose shock but that none of these populations displaced the initially dominant populations except in reactor 2. The fourth reactor, which behaved differently in function (11), underwent only small community changes after the perturbation (Fig. 3D).

Despite the variation observed in the LS set, similarities among reactors 1 through 3 were discernible. Streptococcus-related OTUs (LS II and LS III) and coccal morphotypes remained prevalent in reactors 1 and 3 and their proportions increased in reactor 2, indicating that Streptococcus-like bacteria were responsible for the rapid accumulation of lactate in reactors 1, 2, and 3 (30) (Fig. 3C and D). The simultaneous degradation of lactate and accumulation of butyrate in these three reactors suggest that lactate was reduced to butyrate (11). Many low-G+C-content gram-positive organisms, such as Butyrivibrio methylotrophicum and Clostridium butyricum, are capable of fermenting lactate to butyrate (2, 23). The proportions of OTUs related to Clostridium ramosum (LS IV) and Eubacterium barkeri (LS V) increased in reactors 1 through 3 between day 0 and day 8. The prevalence of LS IV and LS V
varied in reactors 1, 2, and 3, with LS IV being very dominant in reactor 2 and absent from reactors 1 and 3 (Fig. 3D). *E. barkeri* and *C. ramosum* have different physiologies, but both are saccharolytic specialists capable of fermenting glucose to different ratios of butyrate, lactate, and acetate and different ratios of formate, acetate, and lactate, respectively. The appearance of ribotypes LS IV and LS V in the LS set suggests that the corresponding organisms may have played a role in the carbon conversions that occurred after the accumulation of lactate. However, they could also have fermented glucose, and further experimentation is needed to determine if the organisms represented by LS IV and LS V ferment lactate to butyrate.

Morphological analysis of reactor 1 revealed a significant increase in the frequency of minor morphotypes after the perturbation, which was reflected in an increase in diversity from $H' = 1.71$ on day 0 to $H' = 2.12$ on day 8 and $H' = 2.23$ on day 24. This is consistent with the average increase in ARDRA OTU diversity from $H' = 2.01 \pm 0.31$ on day 0 to $H' = 2.18 \pm 0.31$ on day 8. Changes in the frequency of cocci directly after the perturbation and long-term increases in the frequencies of several other morphologies, such as short thin rods, curved rods, prosthecates, and unbranched filaments, significantly changed the community structure, as indicated by a decrease in the proportional community similarity index to 60% (Fig. 3C). However, this change was less pronounced than the community shift that occurred after the perturbation in the LS set and did not involve the displacement of the most dominant organisms (Fig. 3). The LS bacterial community was therefore more stable and less flexible than the HS community because the main fermenting populations were not displaced during the perturbation as they were in the HS community. In contrast to the community behavior, the HS reactors were more functionally stable following the glucose shock (11).

Despite similarities in initial community structure between reactors 2 and 4 (Fig. 1 and 3), the response of reactor 4 to the glucose shock was unique. Functionally, this reactor accumulated large amounts of ethanol and was the least stable of the eight reactors analyzed (11). The frequency of the most prevalent bacterial ribotype—*Spirochaeta* sp. LS I—remained unchanged and *Streptococcus*- and *Clostridium*-related ribotypes became detectable following the perturbation (Fig. 3D). Morphological analysis of this reactor 24 h after the glucose shock revealed that the proportions of all dominant morphotypes remained the same (data not shown). Changes in community composition that occurred in reactor 2 correlated with more functional stability following the substrate perturbation, while the structural stability of the reactor 4 community corresponded with poor functional stability.

Although there were many significant changes in the LS communities after the perturbation, the dominant fermenting bacteria before the perturbation were responsible for fermentation of the added glucose in the LS reactors, while in the HS communities an undetected population rapidly arose and fermented the excess glucose; therefore, the HS community structure was less stable than the LS community structure during this perturbation. This implies that functional stability does not necessarily correlate with stability in community structure and even suggests that a less flexible or more “stable” microbial community structure results in poor function following a significant perturbation. This may be because organisms that are dominant under steady-state conditions are not the organisms best adapted to perturbed conditions. Although the perturbation affected the HS communities more than the LS communities, the HS communities recovered to their preperturbation state within 16 days. Thus, the perturbation did not permanently alter the entire HS community structure even though minority community members responded to the perturbation, again demonstrating the flexibility of this community.

Community model and implications. The polyphasic approach of combining several methods (morphological analysis, ARDRA, SSU rRNA probes, and functional analysis) used in
this study and in a companion study (11) allowed us to overcome methodological limitations and develop a network model of community structure and function based on the anaerobic food chain (Fig. 6). The large population of spirochetes in the HS community mainly fermented glucose under preperturbation conditions. When a large pulse of glucose was applied, the fast-growing organism Eubacterium sp. strain 094 that was initially present at very low levels emerged and outcompeted the more slowly growing spirochete population, eventually shifting 30% of the electron and carbon flow through butyrate.

The high proportion of fast-growing acetoclastic Methanosaeta species in these reactors rapidly metabolized acetate generated after the perturbation, resulting in little accumulation of acetate (29). It is important to note that even though we used a number of community analysis techniques, we were unable to define the populations responsible for every metabolic activity in the HS community, such as the conversion of glucose to propionate or the conversion of butyrate to acetate.

A unifying model of community structure and function for the LS reactors is less clear because of the greater variability in the community structure of these reactors. The greater variability and diversity in the LS communities may be a result of the reduced amount of time that this study of bioreactors was operated in the laboratory. It might be expected that the greater diversity of these communities would result in a better functional response to a perturbation, but we found that this was not the case. In reactors 1, 2, and 3 it appears that Streptococcus-like organisms rapidly produced large amounts of lactate during the glucose shock. Streptococci typically have high growth rates (30), which probably allowed them to remain predominant following the substrate shock. Lactate was then converted to butyrate by other fermentative bacteria. Only low-G+C-content gram-positive bacteria have been reported to convert lactate to butyrate, implying that perhaps the Clostridium-related species that became abundant after the perturbation performed this conversion; however, clostridia have a broad metabolic potential and the in situ activity of uncultured populations is difficult to infer from only phylogenetic information. Conversion of butyrate to acetate by an undefined population resulted in accumulation of acetate (11). This was likely due to the predominance of slowly growing acetoclastic Methanosaeta species. The carbon conversions that took place in the LS reactors were serial in nature, in contrast to the parallel conversions in the HS reactors, and may have contributed to the functional instability of the LS reactors (11) (Fig. 6).

Despite the differences in the HS and LS communities, the relative frequencies of ribotypes belonging to the Eubacterium-Clostridium group increased after the glucose shock in all eight reactors (Fig. 3B and D). Although these ribotypes were not closely related phylogenetically, they all likely had the ability to produce large amounts of H₂, shifting the reducing equivalents directly to a neutral, methanogenic substrate that was rapidly utilized and possibly conferring functional stability on the ecosystem (15). In both types of reactors there was also an increase in ribotype and morphotype diversity after the perturbation, demonstrating that fluctuating environmental conditions can indeed increase the diversity of microbial communities. In addition, replication of the HS response indicates that although undetectable members may play an important role in a perturbation response, their response is not stochastic and thus may be predicted. These results also show that mathematical models based exclusively on dominant populations have limited predictive power.

Conclusions. This study demonstrates that some reproducibility in community structure and response is feasible for complex bioreactor communities, and hence it should facilitate the use of bioreactors in the study of ecological questions. Syn- trophs and other minority populations represent a significant uncertainty in this system because they are present at relatively low levels yet have a critical functional role; however, our results indicate that the impact of minority members is reproducible and thus should be included in mathematical models of bioreactor communities.

An important issue in the management of complex ecosystems is how functional stability relates to population stability and diversity. Functional stability could not be attributed to higher species diversity or community stability in this study. The glucose shock altered the Bacteria composition of the HS reactors more profoundly than that of the LS reactors, yet the HS reactors were functionally more stable. In addition, different biochemical pathways were active in two reactor sets, possibly affecting the functional stability (11). These results indicate that stability is linked to community flexibility reflected in the ability to shift the electron and carbon flow through various alternative guilds in an efficient manner.

ACKNOWLEDGMENTS

This research was supported by NSF grant DEB 9120006 to the Center for Microbial Ecology. A.S.F. was partially supported by an OAS grant and by the Comisión Secretarial de Investigación Científica, Universidad de la República, Montevideo, Uruguay.

We are grateful to Kay Gross (Kellogg Biological Station, Michigan State University) for her valuable discussions about ecological concepts throughout the course of this work and to Suiying Huang for her help with the ARDRA.

REFERENCES

