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Abstract Trichoderma spp. are widely used in agricul-

ture as biofungicides. Induction of plant defense and

mycoparasitism (killing of one fungus by another) are

considered to be the most important mechanisms of

Trichoderma-mediated biological control. Understanding

these mechanisms at the molecular level would help in

developing strains with superior biocontrol properties. In

this article, we review our current understanding of the

genetics of interactions of Trichoderma with plants and

plant pathogens.
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Introduction

Trichoderma spp. (teleomorph Hypocrea) are the most

successful biofungicides used in today’s agriculture with

more than 60 % of the registered biofungicides world-wide

being Trichoderma-based [1]. In India alone, about 250

products are available for field applications [2]. Despite

this remarkable success, the share of biofungicides is only a

fraction of the fungicides market, dominated by synthetic

chemicals. The major limitations of microbe-based fungi-

cides are their restricted efficacy and their inconsistency

under field conditions. The origin of these difficulties is

that microbes are slow to act, compared to chemicals, and

are influenced by environmental factors. Here, ‘‘genetic

intervention’’ to design strains that are more effective than

the native ones might prove useful. This goal could be

attained by gaining knowledge on the molecular mecha-

nisms of interactions of these organisms with other biotic

and abiotic factors. Trichoderma spp. have received a great

deal of attention from the academia in the past, generating

extensive data on their molecular genetics and physiology.

This work culminated in whole genome sequencing of four

mycoparasitic Trichoderma species [3; http://genome.jgi.

doe.gov/Triha1/Triha1.home.html, http://genome.jgi.doe.

gov/Trias1/Trias1.home.html]. We summarize here the

recent findings on the genetics of interactions of Tricho-

derma with plants and pathogens.

Trichoderma–Plant Interactions

Many Trichoderma spp. grow in the rhizosphere and are

capable of penetrating and internally colonizing plant roots

[4]. This opportunistic/facultative symbiosis is driven by

the ability of Trichoderma to derive sucrose or other

M. Mukherjee � P. K. Mukherjee

Central Institute for Cotton Research, Shankar Nagar PO,

Nagpur 440010, India

B. A. Horwitz

Department of Biology, Technion-Israel Institute of Technology,

32000 Haifa, Israel

C. Zachow

Austrian Centre of Industrial Biotechnology (ACIB GmbH),

Petersgasse 14, 8010 Graz, Austria

G. Berg

Institute of Environmental Biotechnology, Graz University

of Technology, Graz, Austria

S. Zeilinger (&)

Division Biotechnology and Microbiology, Institute of Chemical

Engineering, Vienna University of Technology,

1060 Vienna, Austria

e-mail: szeiling@mail.tuwien.ac.at

123

Indian J Microbiol (Oct–Dec 2012) 52(4):522–529

DOI 10.1007/s12088-012-0308-5

http://genome.jgi.doe.gov/Triha1/Triha1.home.html
http://genome.jgi.doe.gov/Triha1/Triha1.home.html
http://genome.jgi.doe.gov/Trias1/Trias1.home.html
http://genome.jgi.doe.gov/Trias1/Trias1.home.html


nutrients from plants, in return for boosting plant immunity

against invading pathogens and improving photosynthetic

abilities [5–7]. The presence of Trichoderma in the rhizo-

sphere evokes a coordinated transcriptomic, proteomic and

metabolomic response in the plant [5, 8–11]. This repro-

gramming of the plant is often beneficial, improving

growth, yield and resistance to pathogens.

Root Colonization

Trichoderma spp. can colonize plant roots, both externally

and internally (Fig. 1). As in other biological interactions,

the attraction of Trichoderma to plant roots likely results

from interplay of chemical signals from both partners. This

primary step in the Trichoderma–plant interaction is rather

poorly understood compared to those that follow, i.e.,

attachment, penetration and internal colonization of plant

roots. Trichoderma spp. produce and modulate hormonal

signals in order to facilitate the colonization of roots. The

fungus produces auxins that promote root growth which, in

turn, facilitates colonization by increasing the available

surface area [12]. The role of accd, encoding ACC deam-

inase, in regulation of canola root growth by T. asperellum

was demonstrated by gene knockout [13]. Trichoderma

deploys small secreted cysteine-rich hydrophobin-like

proteins to facilitate anchoring/attachment. Two such pro-

teins have been found to facilitate attachment to the

roots—TasHyd1 from T. asperellum and Qid74 of T. har-

zianum [14, 15]. Trichoderma spp. secretes expansin-like

proteins with cellulose binding modules and endopolyga-

lacturonase to facilitate root penetration [16, 17]. Once

inside the roots, these fungi can grow inter-cellularly, albeit

limited to epidermal layer and outer cortex. Initial sup-

pression of plant defense may facilitate root invasion.

T. koningii, for example, suppresses the production of phy-

toalexins during colonization of Lotus japonicus roots [18].

Induced Defense

Plants respond immediately to Trichoderma invasion by

rapid ion fluxes and an oxidative burst, followed by depo-

sition of callose and synthesis of polyphenols [19]. Sub-

sequent events involve salicylate (SA) and jasmonate/

ethylene (JA/ET)-signaling, which results in the entire plant

acquiring varying degrees of tolerance to pathogen invasion

[19]. This response has, most frequently, been described as

JA/ET-mediated induced systemic resistance (ISR) and

resembles the response triggered by plant growth-promoting

rhizobacteria (PGPR). Recent findings, however, indicate

that at higher inoculum doses Trichoderma can trigger a SA-

mediated systemic acquired resistance (SAR) response,

similar to that invoked by necrotrophic pathogens [20–23].

The signaling events leading to induced resistance are not

thoroughly understood. A hint comes from implication of a

mitogen-activated protein kinase (MAPK) from cucumber

and a MAPK from T. virens in the molecular cross talk

between plant and Trichoderma, presumably triggering the

downstream defense responses [24, 25].

Xylanase and peptaibols (peptaibiotics with high content

of alpha amino isobutyric acid) like alamethicin and trich-

ovirin II which are produced by Trichoderma spp. were

shown to elicit an immune response in plants [26–29].

Recently, a PKS/NRPS hybrid enzyme involved in defense

responses in maize was identified [30]. The best character-

ized elicitor produced by Trichoderma spp. is Sm1/Epl1, an

abundantly secreted, small cysteine-rich hydrophobin-like

protein of the cerato-platanin (CP) family [31, 32]. Deletion

of this Trichoderma gene impairs elicitation of ISR in maize

[33]. The monomeric form of Sm1 is in a glycosylated state

which is essential for elicitation properties. It was suggested

that the monomeric form in the non-glycosylated state is

susceptible to oxidative-driven dimerization in plants ren-

dering Sm1 inactive as inducer of ISR [34]. Recently, the

3-D structure of the Ceratocystis platani cerato-platanin has

been resolved and the carbohydrate residue (an oligomer of

N-acetyl glucosamine) that binds to it has been identified

[35]. Since the CP protein family is highly conserved, its

structure and carbohydrate-binding properties may suggest a

mechanism for the elicitation properties of Sm1.

The Endophytic Trichoderma

Recent reports suggest that some Trichoderma spp. are not

restricted to outer root tissues, but can also live in the plant

as ‘‘true’’ endophytes [29]. Interestingly, most of the endo-

phytic Trichoderma discovered are ‘‘new’’ species (e.g.,

T. stromaticum, T. amazonicum, T. evansii, T. martiale,

T. taxi and T. theobromicola), different from those routinely

isolated from soil/rhizosphere and a phylogenetic analysis

revealed that these species are of recent evolutionary origin

[29–40]. The endophytic Trichoderma species are reported

to induce transcriptomic changes in plants and some are

known to protect plants from diseases and abiotic stresses

[41, 42]. Some of these endophytes preferentially colonize

the surface of glandular trichomes and form appressoria-like

structures [43]. This is one example where Trichoderma

uses a ‘‘non-root’’ mode of entry into the plant.

Interactions with Plant Pathogens

Mycoparasitism is apparently an ancestral trait of Tricho-

derma/Hypocrea [3, 29]. The ability of Trichoderma to

parasitize and kill other fungi has been the major driving

force behind the commercial success of these fungi as

biofungicides. In addition, some Trichoderma spp. can kill
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nematodes and hence have the potential for applications as

bio-nematicides [44]. A typical mycoparasitic interaction

involves sensing of the host/prey fungus, attraction,

attachment, coiling around and lysis brought about by

hydrolytic enzymes, in many cases, in conjunction with

secondary metabolites (Fig. 2).

Environmental signaling plays an important role in

cellular organisms. Understanding of the mechanisms of

cell signaling in Trichoderma is limited compared to

‘‘model’’ fungi like Magnaporthe grisea and Neurospora

crassa, but there has been significant progress based on

genetic approaches. The seven transmembrane G protein-

coupled receptor Gpr1 is involved in sensing the fungal

prey: silencing of the gpr1 gene in T. atroviride rendered

the mycoparasite unable to respond to the presence of the

host fungus [45]. Binding of a ligand to such receptors

leads to downstream signaling events via activation of

G-protein cascades. Indeed, deletion of the Tga3 Ga pro-

tein-encoding gene affected the mycoparasitic abilities of

T. atroviride in a similar way to loss of Gpr1 [46]. Deletion

of the adenylate cyclase gene tac1 severely impaired

growth and mycoparasitic abilities of T. virens [47]. Like

Fig. 1 Green fluorescent labeled Trichoderma velutinum G1/8 on

sterile grown 2 weeks old sugar beet seedlings. Confocal laser

scanning microscopy (CLSM) was performed with a Leica TCS SPE

confocal microscope (Leica Microsystems, Mannheim, Germany).

a Root surface (yellow) and T. velutinum hyphae (green). Hyphae

grow between the root cells and follow their cell shape and direction.

b Differential interference contrast microscopy of the lateral roots and

root hairs combined with CLSM of green T. velutinum hyphae

following the growth direction of the root hairs. (Color figure online)

Fig. 2 Mycoparasitism of

Trichoderma virens (T) on

Rhizoctonia solani (R).

a Attraction, b attachment,

c coiling, d lysis of host hyphae

[72]
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most other filamentous fungi, Trichoderma spp. have three

MAPK cascades comprising MAPKKK, MAPKK and

MAPK [48] and MAPK pathways may act in mycopara-

sitism and biocontrol [49, 50]. These data imply important

functions of signaling cascades in mycoparasitism and

related biocontrol properties (Fig. 3).

Attachment to Host Fungi

Attachment to and attack of host fungi by mycoparasitic

Trichoderma is accompanied by the formation of appres-

soria- or papillae-like structures and/or coiling around host

hyphae [29]. The genetics underlying attachment of the

mycoparasite to the host fungus are not well understood,

although hydrophobins are possibly involved [29]. Though

experimental evidence is lacking, indirect support for the

involvement of hydrophobins comes from the finding that

T. virens mutants in the transcriptional regulator of sec-

ondary metabolism and morphogenesis Vel1, which have

decreased hydrophobin expression, were defective in both

hydrophobicity and mycoparasitism [51].

Killing the Host: Production of Hydrolytic Enzymes

and Antibiotics

Hydrolytic enzymes and antibiotics are among the most

important members of the chemical arsenals deployed by

Trichoderma to kill other fungi. Not surprisingly, the

genomes of the mycoparasitic Trichoderma spp. are rich in

genes encoding enzymes like chitinases and glucanases,

and those for secondary metabolism like NRPSs [3]. Ear-

lier evidences suggested the involvement of chitinases in

biocontrol though the effects of deletion of chit42/ech42

were not very drastic, possibly because of a large reservoir

of genes with a compensatory effect [29]. Glucanases are

another group of cell wall-lytic enzymes with roles in

mycoparasitism/biocontrol. Deletion of tvbgn3 (b-1,6-glu-

canase-encoding) reduced the mycoparasitic and biocontrol

potential of T. virens against P. ultimum [52]. Co-overex-

pression of two b-glucanases (Bgn2 and Bgn3) resulted in

improved biocontrol of T. virens against R. solani,

P. ultimum and Rhizopus oryzae [53]. In addition to

chitinases and glucanases, proteases like Prb1/Sp1 are

induced during mycoparasitism and play definitive roles in

biocontrol [54]. In contrast to studies on hyphal parasitism,

very little research has been done on the molecular

mechanisms of parasitism of resting structures. One

exception is the suggested role of a laccase in colonization

of sclerotial structures by T. virens [55].

Trichoderma spp. are prolific producers of secondary

metabolites and the genomes of the mycoparasitic Trich-

oderma spp. are especially enriched in genes for secondary

metabolism [3, 56]. Nevertheless, genome analyses suggest

that most of the secondary metabolism-related genes are

-
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Fig. 3 Mycoparasitism-relevant signaling pathways of Trichoderma
atroviride/Trichoderma virens. Trichoderma secretes cell wall-degrad-

ing enzymes (CWDEs) already before contact which release degrada-

tion products from the host’s cell wall. These act as signals for host

recognition in the mycoparasite. After activation of G protein signaling

(Gpr1, Stm1 = GPCRs, Tga1/TgaA, Tga3 = Ga proteins), MAPK

(Tmk1/TmkA = MAPK) and cAMP pathways (Tac1 = adenylate

cylcase, PKA-R = regulatory subunit, PKA-C = catalytic subunit of

cAMP-dependent protein kinase) act as downstream effectors. Via

phosphorylation, respective targets are regulated resulting in full

induction of CWDEs and secondary metabolism. T. atroviride Gpr1,

Tga1, Tga3, Tmk1 and T. virens TgaA, TmkA, Tac1 were proven to

regulate essential mycoparasitism-related processes. Involvement of

Stm1 was deduced from a transcriptomic study [65]
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not expressed under standard laboratory conditions [3, 57].

Roles of antimicrobial secondary metabolites such as

gliotoxin and gliovirin in suppression of R. solani and P.

ultimum have been suggested, although contradictory

reports exist [58]. The non-ribosomal peptide synthetase

Tex1 assembles an 18-residue peptaibol (trichovirin II) and

by using Dtex1 mutants the trichovirin II type peptaibols

were shown to trigger induced resistance in plants [27, 59].

Recently, genetic evidence has been provided for the

assembly of 11- and 14-modules peptaibols by a single

NRPS (Tex2 of T. virens; [60]). Given the fact that these

peptaibiotics are strongly antimicrobial (by being able to

form voltage-gated membrane channels), their role in

fungus–fungus interactions cannot be ruled out. Accord-

ingly, the T. pseudokoningii peptaibol trichokonin VI was

shown to induce programmed cell death in Fusarium

oxysporum [61]. Certain species like T. atroviride produce

the volatile metabolite 6-pentyl-2H-pyran-2-one (6-PP)

which plays an important role in Trichoderma–plant and

Trichoderma–fungal interactions [62, 63]. Though the

pathway is yet to be identified, a transcription factor,

Thctf1, involved in the biosynthesis of 6-PP has been

characterized [64].

Lessons from Genome Sequencing

At present, the genome sequences of five species, T. reesei,

T. atroviride, T. virens, T. harzianum and T. asperellum,

are available. The saprophyte T. reesei often is found on

decaying wood and, because it can secrete large amounts

of cellulases and hemicellulases, this species is of indus-

trial importance. Compared to the mycoparasitic species

T. atroviride, T. virens, T. harzianum and T. asperellum,

T. reesei has the smallest genome (34.1 Mb, 9,129 gene

models) probably resulting from a loss of mycoparasitism-

specific genes [3, 29]. The genome sizes of the mycopar-

asites range from 36.1 Mb (T. atroviride, 11,863 gene

models), 37.4 Mb (T. asperellum, 12,586 gene models),

38.8 Mb (T. virens, 12,427 gene models) to 40.98 Mb

(T. harzianum, 14,095 gene models). In addition to being

saprophytes found in soil, mycoparasitic Trichoderma

species frequently live in association with plant roots and

living or dead fungal biomass. T. atroviride and T. asper-

ellum are phylogenetically ancestral species [3] and both

are powerful antagonists of other fungi (necrotrophic my-

coparasites). T. virens and T. harzianum are aggressive

parasites of phytopathogenic fungi, too; in addition, these

species are particularly effective in the stimulation of plant

defense responses [29].

Comparative genome analysis between T. atroviride,

T. virens and T. reesei revealed an expansion of several

gene families in the mycoparasites relative to T. reesei or

other ascomycetes. These expansions comprise genes spe-

cific for mycoparasitism such as chitinases and some glu-

canases and those involved in secondary metabolite

biosynthesis [3]. Many members of these families are

expressed before and during contact with the host/prey

fungus [65]. Recent secretome analysis further revealed that

Trichoderma may have one of the largest sets of proteases

among fungi. Subtilisin-like proteases of the S8 family,

dipeptidyl and tripeptidyl peptidases are expanded in the

mycoparasites [66]. These findings not only show the

importance of these genes in attacking and killing the fungal

prey but further support the adaptation of the mycoparasitic

Trichoderma species to their antagonistic lifestyle.

Conclusions

Being biotechnologically important, mycoparasitic Trich-

oderma spp. are extensively researched for both field

applications as well as basic biology. Even though there

have been several studies on the genetic basis of interaction

of Trichoderma with other organisms (notably fungi and

plants), an in depth understanding of the mechanisms is

lacking. The absence of high throughput studies in these

organisms has been due to the lack of whole genome

sequences. However, this scenario is now expected to

change with the availability of five Trichoderma genomes.

Some progress has already been made in this direction with

genome-wide expression studies [65, 67–70]. An interna-

tional initiative should be undertaken to elucidate the

functions of each gene by high throughput gene knockouts

as accomplished with N. crassa in an exemplary commu-

nity effort [71]. This, together with transcriptome analyses

under conditions of mycoparasitism and plant root colo-

nization, would help in identifying novel candidate genes

involved in the interactions of Trichoderma spp. with

plants and plant pathogens. Once this is achieved, it should

be possible to engineer tailor-made strains for optimal

biocontrol and other biotechnological applications.
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