Penaeid Shrimp Immune System

Gabriel Aguirre-Guzmán1* Jesús Genaro Sánchez-Martínez1
Angel Isidro Campa-Córdova2 Antonio Luna-González3 Felipe Ascencio2

Abstract

Research on an innate immune system of penaeid shrimp is greatly motivated by economical requirements, because their culture is limited by the development of infectious diseases. As invertebrates, shrimp’s natural immunity acts as a fast and efficient defence mechanism against the pathogens. Their immune system involve hemocytes (for encapsulation, nodule formation and phagocytosis), several plasma components (antimicrobial peptides, histones, lysosomal enzymes, lipopolysaccharide, β-1,3-glcan binding proteins, and recognition molecules), and multimeric systems (clotting protein cascade, prophenoloxidase system). When these defense mechanisms fail to protect the shrimp against bacteria, viruses, fungi, protozoa and their products, disease develops and a negative impact takes place in the shrimp culture system. Studying the shrimp immune system is attractive for the advancement of a basic knowledge on invertebrate and vertebrate general immunity, because it offers various possible alternatives for disease management in shrimp aquaculture. The aim of this document is to present the general status of the shrimp defense system, to help in the development of strategies that favour the control and prevention of disease.

Keywords : immune system, innate immune system, shrimp

*Corresponding author E-mail: gabaguirre@uat.edu.mx
Introduction

Total world fisheries production has decreased while human consumption of aquatic organisms has increased (FAO, 2006). This reduction in capture fisheries has been partly compensated by the fast growth of the aquaculture industry, where the commercial culture of penaeid shrimp is an important sector in tropical and subtropical countries (FAO, 2006). However, shrimp diseases have been responsible for the collapse of aquaculture in a number of countries, and are considered as a limiting factor for its development (Flegel, 2006). Epizootics are attributed to the inadvertent transmission of pathogens due to biosecurity problems and poor management practices, affecting the growth of the cultured organisms and generating important economic losses (FAO, 2006). The implementation of biosecurity methods and the timely diagnosis during culture may avoid pathogen’s access and propagation, helping in the reduction of losses due to mortalities and treatment costs (Flegel, 2006). Furthermore, the importance of understanding shrimp physiology and immunology is important for the control and prevention of disease (Raico et al., 2003). Therefore the purpose of this minireview is to present the general status of the shrimp defense system, to help in the development of strategies that favour the control and prevention of the disease. For practical purposes this minireview will address first the physical defence barriers, then the cellular and humoral defence systems, shrimp immunostimulation and finally future research perspectives.

I. Physical barriers

Physical barriers are the first line of defense on shrimp and consist of a rigid exoskeleton, which protects...
from injury and microbial attacks. The exoskeleton is composed of calcium carbonate, carbohydrates and proteins, and contributes to different physiological processes associated with the immune response (Mylonakis and Aballay, 2005). There are reports of diffuse distribution of hemocyanin and catalytic phenol oxidation over the exocuticle and endocuticle of crustaceans; both are important immune response against microbes (Adachi et al., 2005). However, the mechanisms involved in crustaceans’ cuticle hardening and the role of phenoloxidase are poorly understood. For practical purposes this mini-review will address first the physical defence barriers, then the cellular and humoral defence systems, shrimp immunostimulation and finally future research perspectives.

II.- Cell mediated immune defense

Crustaceans have an open circulatory system with blue-green hemolymph, which circulates through the hemocele and irrigates the crustacean tissues. Hemocytes and humoral components are transported by the hemolymph favouring their encounter with foreign particles (Rendon and Balcazar, 2003).

Hematopoiesis is the source for mature effectors cells for the innate immune system, which show roles on host defense and homeostasis. Blood cell formation is regulated from extra and intracellular signs that result in the activation of specific downstream signalling cascades. The hematopoietic tissue (HPT) in crustaceans is an extensive network of packed lobules located at the dorsal and dorsolateral sides of the stomach, close to the antennal artery and at the base of the maxillipeds. Hemocytes are produced within the walls of these tubules and released into the vessel lumens (Studerhüll et al., 2003). The HPT of *Penaeus monodon* and other penaeid shrimp is located in different areas stomach, maxillipeds and antennal gland (Van de Braak et al., 2002).

Penaeid shrimp hemocytes have the same biological properties and functions with vertebrate macrophages, granulocytes and natural killer cells (Van de Braak, 2002). These cells participate in phagocytosis, encapsulation, nodule formation, wound repair, clotting, and proPO activation. They also help the production of adhesion molecules, agglutinins and antimicrobial peptides (AMP) (Destoumieux et al., 1997; Bachère et al., 2000). Hemocytes also have inhibitory enzymes needed for regulating the proteolytic cascade, preventing its over stimulation and the resultant tissue damage, while also producing cytotoxic molecules such as lysozyme, phosphatase, esterase, phospholipase, peroxidase, protease, etc. (Van de Braak, 2002; Johansson et al., 2000).

There are three classes of hemocytes, hyalinocytes, granulocytes and semi-granulocytes. Hyalinocytes (5-15% of circulating hemocytes or CE) are small non-refractive cells, with a small nucleus relative to their cytoplasm, which have few or no cytoplasmic granules. Hyalinocytes have no phagocytic activity and easily adhere to glass surfaces, like fish and mammals macrophages. The primary role of these cells is related to clotting and phagocytosis (Zhang et al., 2006).

Granulocytes (10-20% of CE) have the smallest nucleus and a high number of cytoplasmic granules (0.8 μm width). Granulocytes display phagocytic activity and store the enzyme prophenoloxidase (proPo). These cells may be stimulated by β-1,3-glucans, peptidoglycans (PG) and lipopolysaccharides (LPS) to provoke exocytosis and enzyme release. Their function is encapsulation, initiating the proPO cascade and phagocytosis (Zhang et al., 2006). Semi-granulocytes (75% CE) have a large numbers of small granules (0.4 μm width) similar to vertebrate granulocytes. These cells posses β-1,3-glucans receptors and their principal function involves phagocytosis, encapsulation and clotting (Martin and Graves, 2005; Zhang et al., 2006).

Phagocytosis

Phagocytosis involves the internalization of foreign material. This is the main cellular defense mechanism in invertebrates, and is carried out by the semi- and granulocytes; it consists of chemotaxis, adherence, ingestion, pathogen destruction and exocytosis (Kondo
Phagocytic cells destroy the internalized organisms by two routes, an aerobic process which uses NADPH or NADH as an electron donor, and reduces an oxygen electron to form the superoxide ion. This radical in turn changes to hydrogen peroxide (H$_2$O$_2$) spontaneously or by the action of the superoxide dismutase (SOD), producing a new oxygen molecule. In penaeid hemocytes, the activation of the aerobic process has been demonstrated by the use of bacteria (Vibrio parahaemolyticus and V. vulnificus) and surface microbial antigens (β-1,3 glucan, PG, LPS, and zymosan), as both increase the phagocytic capacity of hemocytes to destroy pathogens (Itami et al., 1998; Song and Huang, 2000; Campa-Córdova et al., 2002). The second, anaerobic process is attribute to the action of diverse microbicidal enzymes, such as lysozyme and low molecular weight AMP (Nappi and Ottaviani, 2000).

Encapsulation and nodule formation

Semi granulocytes are responsible for the recognition of the invading agents and their encapsulation with proteins (76 kD) that work as an opsonins associated to the proPO activation system. These proteins act as a degranulation and adhesion factor for semi and granulocytes, and as an encapsulation promoter (Vargas-Albores and Yepiz-Plascencia, 1998; Wang et al., 2001; Van de Braak, 2002). The hemolymphic nodules, detected in gill and hepatopancreas, are formed by numerous hemocytes acting synergistically to trap microorganisms or big antigens that cannot be removed by phagocytosis. These nodules undergo the subsequent activation of the proPO system, melanisation and destruction of microbes (Wang et al., 2001; Van de Braak, 2002).

Antioxidant system

Antioxidant factors protect the shrimp from the cytotoxic effects caused by the cellular metabolism and oxidative stress generated by the disequilibrium of the reactive oxygen intermediates (ROIs), stress tests had been done in marine organisms by Downs et al., 2001. The study detected an increase in the levels of the antioxidant enzymes and immune system molecules pointing out the important role of the antioxidant enzymes as the immune response modulators.

ROIs and reactive nitrogen intermediates (RNIs) are generated in phagocytic vacuoles. These molecules are capable of crossing the cell barrier and damaging the neighbouring cells (Nathan and Shiloh, 2000). To prevent this damage, antioxidant defense strategies have been developed including enzymatic substance (catalase, glutathione peroxidase (GPx), and SOD) and non-enzymatic components (ascorbate, β-carotene, flavonoids, α-tocopherol and vitamin E), which may neutralize the ROIs or repair the molecular damage done to the cell (Nathan and Shiloh, 2000).

SODs are one of the main defense mechanisms against oxidative stress caused by pollution, infections, hypoxia, hyperoxia, temperature and immunostimulants (Neves et al., 2000). SODs have been classified in manganese SOD (mitochondria and prokaryotes), iron SOD (bacteria and plants) and copper-zinc SOD (eukaryotic cytosol). An extracellular SOD (EC-SOD) has been reported in lobster, associated with phagocytosis, opsonization, encapsulation and generation of microbicidal compounds (Homblad and Söderhäll, 1999).

Oxyl radical scavenging capacity

The production of oxidative compounds with antimicrobial effects has been studied in hemocytes from invertebrates (Van de Braak, 2002; Buggé et al., 2007). This cellular response is rapid and transient, and is produced during microbe phagocytosis. These compounds include superoxide anions (O$_2^-$), hydroxyl radical (OH$^-$), H$_2$O$_2$, ROIs, and RNIs such as nitric oxide and peroxynitrite (Roch, 1999). The ROIs and RNIs are an innate immune responses present in echinoderms, nematodes, annelids, insects, crustacean and molluscs (Nappi and Ottaviani, 2000). Their production is mediated by the enzymes NADPH oxidase and nitric oxide synthetase (NOS) respectively. Other enzymes involved in ROI production
are xanthine oxidase and glucose oxidase (Nappi and Ottaviani, 2000). The RNI are nitric oxide derivatives, which are synthesized from L-arginin by NOS.

Prophenoloxidase system
Granulocytes are responsible for the synthesis, storage and secretion of the proPO system, which is activated by fungal β-glucans, PG and LPS. These molecules induce the granulocyte secretion of inactive proPO granules and their transformation (cascade reaction) to proPO enzyme. This oxidizes phenols into quinones, which may help to kill pathogens and are used for melanin production (Lee et al., 2004; Hellio et al., 2007). In addition, the proteins interacting in the proPO cascade process are associated with cell recognition and hemocyte communication.

Peroxynectin is a proPO system associated factor that creates cellular adhesion and acts as a peroxidase. This molecule is synthesized and stored by the granulocytes and activated upon cell secretion. Hemocyte’s transmembrane receptors are responsible for the peroxynectin cell adhesion, hemocyte dispersion, phagocytosis, encapsulation, nodule formation and agglutination which resulted in peroxide activation and the invading agent destruction (Söderhäll and Cerenius, 1998; Söderhäll et al., 2003).

Melanization
This is an interesting, little known and complex biochemical process associated to different proteases (trypsine-like serine, serine protease) mediated by the phenoloxidase (PO) system (Robalino et al., 2007; Pais et al., 2008). Melanization plays an important role in the invertebrate defense mechanisms wherein a thick acellular capsule of melanin is generated around foreign objects (Barillas-Mury, 2007). Melanin, a product of the proPO system, is a dark brown pigment with antibacterial properties that inhibits antigens (Holmblad and Söderhäll, 1999). Although microbicidal properties have been attributed to melanin and the other agents such as O₂ and hydroxyl radicals which are generated during quinones formation (Vargas-Albores et al., 1998; Hellio et al., 2007).

Cytokines
The activation of antimicrobial responses in invertebrates is mediated by cytokines which are produced by hemocytes. Some analogues of vertebrate cytokines such as interleukins (IL-1, IL-2, IL-6) and tumour necrosis factor alpha (TNF-α) have been identified in invertebrates (annelids, echinoderms, mollusc and tunicates). These cytokines analogues have biological functions similar to their corresponding vertebrate molecules (Nappi and Ottaviani, 2000).

Heat shock proteins (HSP) or chaperonins are invertebrate cytokines which are capable of protecting and restoring proteins damaged by stress factors, such as high temperatures, etc. (Frankenberg et al., 2000). The first study that shows association between the heat shock proteins and the stress or immune responses of shrimp was done by Wan-Yu et al. (2004), who cloned and characterized the cDNA of the heat shock cognate 70 gene (652 amino acid sequence, 7.14 kDa) of *P. monodon*. This protein shows a phylogenetic relationship with invertebrate and vertebrate hsc70 proteins, and possibly functions as a chaperone. The expression of hsc70 mRNA, in shrimp hemocytes, increased 2 to 3 fold on one hour post heat shock and had a 30 min recovery time, until these molecules decreased gradually to baseline levels.

Clotting protein cascade
Coagulation is used to prevent the loss of hemolymph through cuts and wounds in the exoskeleton, and to immobilization of invading pathogens (Meng-Yi et al., 2005). Three types of hemolymph clotting systems (cascade) are known in crustaceans. Type A consists of a rapid hemocyte agglutination without plasma coagulation; type B consists of cellular aggregation with limited plasma coagulation; and type C is a limited
cellular aggregation and lysis followed by plasma coagulation. Type C hemolymph coagulation is present in shrimp and other decapods (Yeh et al., 1999; Van de Braak, 2002). In crustaceans, the coagulation process is regulated by clotting proteins (coagulogens) and compartmentalized cellular factors within circulating cells. Clotting proteins in plasma are converted to covalently joined polymers by a Ca$^{++}$ dependent transglutaminase secreted by the hemocytes (Wang et al., 2001b). The cellular clotting proteins can be activated by LPS or β-1,3-glucan, and are related to the proPO activation system (Roux et al., 2002).

III Humoral immune defense

Recognition molecules

There is little knowledge about the cell to cell communication system during the immune response in invertebrates (Nappi and Ottaviani, 2000). Lectins are non-enzymatic proteins or glycoproteins that act in opsonization, agglutination, phagocytosis and pathogen encapsulation. Invertebrate lectins are considered primitive recognition molecules capable of detecting carbohydrates (Nappi and Ottaviani, 2000) which promote proPO system activation (Wang et al., 2001a).

The pattern recognition proteins (PRP) are lectins that detected the molecules like LPS, PG, bacterial lipoteichoic acid, fungal β-1,3-glucans and viral RNA (Song and Huang, 2000; Lee and Söderhäll, 2002), and which favour the activation of specific defense mechanisms by the host. The biological functions of PRPs are the initiation of a protein cascade and/or defense mechanisms’ signalization routes and elimination of blood system invaders. When PRPs detect the antigens, the hemocytes are migrating to their location by chemotaxis, generating an inflammatory response. The crustacean open circulatory system favours this phenomenon, resulting in a fast and efficient defense mechanism against pathogens. Examples of PRPs present in crustacean plasma are β-1,3-glucan binding protein which induces degranulation and proPO system activation, and LPS binding protein, which helps in bacterial agglutination and removal by phagocytosis (Vargas-Albores and Yepiz-Plascencia, 1998; Sritunyalucksana et al., 2002).

The innate immune system identifies pathogens through PRP and their corresponding pattern recognition receptors (PRR), which also are proteins. Toll-like receptors (TLRs) are an evolutionarily ancient family of PRRs presented in animals ranging from cnidarians to mammals, which can detect all kinds of pathogens (Janeway and Medzhitov, 2000; Robalino et al., 2004). TLRs are activated by bacterial and virus infection and have been reported in *Fenneropenaeus chinensis* and *Litopenaeus vannamei* (Li-Shi et al., 2007; Changjian et al., 2008). In mammals, TLRs on specialized antigen-presenting cells function as signal transducers by the way of nuclear factor κB, leading to the production of pro-inflammatory cytokines and the expression of costimulatory molecules on the cell surface (Inamori et al., 2004).

Antimicrobial peptides

An important element against invertebrate’s pathogens are the AMP. These are cationic and amphipathic proteins of low molecular weight (<10 kDa), essential in organisms that lack of adaptive immunity (Marshall and Arenas, 2003). AMPs have wide spectrum of activity, low specificity and are weakly cytotoxic to animal cells. These peptides make pores in the cell membranes of bacteria, fungi, parasites, enveloped viruses and even cancer cells, provoking an instability of ions and energy (Hancock, 1998; Bulet et al., 1999; Lehrer and Ganz, 1999). Based on their amino acid sequence, secondary structure and functional similarities, AMPs have been classified as 1) peptides stabilized by intermolecular disulphide bonds, 2) peptides and linear polypeptides with α-helicoidal structures, and 3) peptides and linear polypeptides with a high content of proline residues and/or glycine (Shai, 1998; Bulet et al., 1999). AMP activity can be reduced by a variety of *in vivo*...
factors, including high concentrations of mono and
divalent cations, polyanions, apolypoprotein A-1, etc.
However, many peptides seem to be relatively resistant
to several of these agents (Hancock, 1998).

Penaeidins, a family of AMPs, are initially
characterized from *L. vannamei*, and their sequences have
been described in *L. setiferus, L. stylirostris, Penaeus
semisulcatus, Marsupenaeus japonicus, P. monodon* and
F. chinensis (Destoumieux et al., 1997; Gross et al., 2001;
Rojtinnakorn et al., 2002; Supungul et al., 2002).
Penaeidins are synthesized and stored in the granulocyte,
and present Gram (+) antibacterial and antifungal
activities (Destoumieux et al., 1997; Destomieux et al.,
1999; Bachere et al., 2000).

Other AMP found in the shrimp, is hemocyanin-
derived peptides, whose C-terminal fragments have
antifungal activity; however, the mechanism by which
hemocyanin is cleaved and activated are still unclear
(Destoumieux-Garzon et al., 2001). Histone proteins;
H₂A, H₂B, H₃ and H₄ found in hemocytes from
L. vannamei show antimicrobial activity against Gram (+)
bacteria and related to vertebrate histones, they may be a
component of innate immunity more widely conserved,
and of earlier origin, than previously thought (Patat
et al., 2004).

Lysosomal enzymes

Lysozyme degrades the mucopolysaccharides of
Gram (-) bacterial cell walls, and modifies the molecular
conformation of the cell surface, allowing their
recognition by phagocytic cells. Lysozymes take part in
the degradation of microbes within and outside
hemocytes, and some play a role of sterases and
chitinases (de-la-Re-Vega et al., 2004).

IV. Peneaid shrimp immunostimulation

Vaccination is used to stimulates the innate and
acquired immune response in vertebrates. It involves the
administration of specific and non-specific compounds
that induce an organismís response against pathogen
agents (Song and Huang, 2000). Unfortunately, only an
innate immune system has been found in invertebrates.
Several antigens (vibrio cells, yeast glucans or their
derivatives) have been experimentally tested to elucidate
the innate immune mechanisms in shrimp (Böhnel et al.,
1999; Sakai, 1999; Vici et al., 2000). Astaxanthants,
chitosan, fucoidan, β1-3 glucan, herbal extracts, laminaria,
LPS, PG, saponins, and vitamin C are the main antigens
experimentally tested in shrimp (Newman, 1999). These
substances can be administered by injection, immersion,
bioencapsulation, per os intubation, and in the feed in
marine organisms (Robles et al., 1998). The results
suggested that they can be an important element in the
control of disease.

Glucans: These molecules are non-specific immuno-
stimulants in crustaceans, inducing resistance against
bacterial pathogens (Vargas-Albores et al., 1998).
However, crustaceans can digest glucans and use them
as sources of energy, losing their function in the animal
immune system. Interestingly, the use of LPS together
with yeast glucan acts synergistically inducing a better
stimulation of the crustacean immune system than when
they are used separately (Newman, 1999).

Peptidoglycans: PGs are a mix of amino acids and
carbohydrates from the cell wall of many bacteria and
have been deemed as potent immunostimulants for the
immune system (Lee et al., 2004). These molecules are
recognized as immunogen by the shrimp immune system,
and *Bifidobacterium thermophilum, Brevibacterium
lactofermentum* and *Bacillus* sp. PGs have been tested
against yellow head virus (YHV) and white spot
syndrome virus (WSSV). The results showed that the
PG exposed shrimp exhibit a higher survival rate than
non exposed shrimp (Itami et al., 1998; Lee et al., 2004).

Fucoidan: These molecules are sulphated polysaccharides
form microalgae cell walls which have been used as
immunostimulants for shrimp. These products have been
somewhat successful against pathogens like WSSV,
Vibrio sp. and other bacterial species. Experimental
administration of fucoidan mixed in the diet has resulted in a 93% increase in survival compared to controls (Chotigeat et al., 2004). However, the action mechanisms are not well understood and more research with these products is necessary.

Lipopolysaccharides: LPS affect the specific and non-specific immune system of many animals, including crustaceans (Vargas-Albores et al., 1998; Newman, 1999). LPS are part of the cell wall of Gram (-) bacteria and are the first molecules recognized by the host’s immune system, thus they have been used in shrimp as a potential tool to prevent diseases. However, most of the work has been done under controlled laboratory conditions and results may vary when performed in the field.

V. Future Perspectives

Understanding the role of the invertebrate immune system against pathogens is growing steadily; however, knowledge about the molecular and cellular mechanisms of immune system associated in the recognition and elimination is scarce. New research areas are including genes, their products, and activation of genetic mechanisms associated to the shrimp immune system. Other research areas where further studies are warranted, include the proPO system, cell adhesion proteins, peroxinectins, pattern recognition proteins, 1,3-glucan binding protein (GBP), and hemocyte formation/activation and their protein synthesis.

Many of the previous studies on shrimp immunology have been done with proteins, immune products, or preparations of limited purity, which made difficult the understanding of their effects on the penaeid immune system. Future studies will have to focus on (i) the use of highly purified proteins or immune products, (ii) the use of assays with the ability of quantitative detection (real-time polymerase chain reaction, enzyme-linked immunosorbent assay) of individual mRNAs or proteins during immunostimulation or disease, (iii) the characterization of the specific microbial or viral structures, or their products associated with infectius diseases, and target organs during the course of infections, (iv) the formation and activation of hemocytes in response to pathogens. New research in those areas will involve the cooperation of biochemists, immunologists, bacteriologists, virologists, molecular biologists and infectious disease experts to discern new immune system models on invertebrates, which will possibly have a significant impact on the understanding of the immune system in general.

References

FAO (Food and Agriculture Organization of the United Nations), 2006. The state of world fisheries and aquaculture (SOFIA).

