Review

Plant growth-promoting rhizobacteria act as biostimulants in horticulture

Maurizio Ruzzi a, Ricardo Aroca b, *

a Dept. for Innovation in Biological Agro-food and Forest systems (DIBAF), University of Tuscia, I-01100 Viterbo, Italy
b Dept. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain

ARTICLE INFO

Article history:
Received 11 June 2015
Received in revised form 26 August 2015
Accepted 28 August 2015
Available online 15 September 2015

Keywords:
PGPR
Hormones
Inoculation
Nutrients
Abiotic stress
Volatiles organic compounds

ABSTRACT

To overcome the challenge of increasing food production with a significant reduction of agrochemical use and environmental pollution, and an increase of natural resource productivity, the use of soil microorganisms in horticulture is essential. One group of microorganisms consists of plant growth-promoting rhizobacteria (PGPR), which have been studied from the beginning of the twentieth century and their mode of action at the physiological level is currently well understood. PGPR mechanisms include hormone release or hormonal changes within plants, the production of volatile organic compounds, the improvement in the availability of nutrients and the enhancement of tolerance to abiotic stresses. All these mechanisms are described in the present review. However, to maximize the effects of these mechanisms, the proper PGPR strain needs to be selected in each soil–plant–PGPR system and the mode of inoculation must be optimized in both greenhouse and open-field experiments. This review summarizes recent progress in our understanding of the PGPR–plant interaction and highlights future lines of research that should increase our knowledge on plant-bacterial communication and that can help to improve the effective use of PGPR in horticulture.

© 2015 Elsevier B.V. All rights reserved.

Contents

1. Introduction .. 124
2. Mode of action ... 125
 2.1. Plant hormonal changes .. 125
 2.2. Volatile organic compounds ... 127
 2.3. Nutrient availability and uptake by plants ... 129
 2.4. Abiotic stress tolerance in plants .. 129
3. Selection of PGPR .. 130
4. Effects of PGPR on horticultural crops ... 130
5. Conclusions and perspectives .. 131
6. References .. 131

1. Introduction

In recent decades, the importance of reducing chemical inputs into horticultural systems has been growing, and governments and growers are aiming to decrease them. The chemical contamination of underground water and rivers and the salinisation of soils caused by horticultural practices have risen in recent years (Phogat et al., 2014). Therefore, solutions are required to maintain crop productivity and to simultaneously reduce chemical inputs in terms of chemical fertilizers and pesticides. Another resource that limits plant productivity is water. According to global-change predictions, several areas of the globe could become arid or semi-arid regions due to a reduction in precipitation (Sivakumar, 2011). Therefore, any strategy that reduces the amount of water added to crops without a loss in yield, is desirable.

To fulfill the above desired practices, one possibility is the use of soil microorganisms that increase the nutrient- and water-use efficiency and uptake capacity (Armada et al., 2014). Among
these potential soil microorganisms, plant growth-promoting rhizobacteria (PGPR) are the most promising. The first report of the use of soil bacteria to promote plant growth apart from a *Rhizobium–legume* symbiosis came from Bottomley (1909). This study showed that a consortium of *Pseudomonas radicicola* and *Azotobacter* sp. increased the growth of oat (*Avena sativa*), the yield of barley (*Hordeum vulgare* L.), and the bulb weight of summer hyacinth (*Galtonia candidans* (Baker) Decne.), effects that were ascribed to an increase in nitrogen (N) availability. However, the term PGPR was not adopted until almost 70 years later than this initial study, at the Annual Meeting of the American Phytopathological Society (Kloepper and Schroth, 1979), where the mechanism of PGPR function was suggested to be via modification of the soil microflora. One year later, Kloepper et al. proposed that PGPRs produced siderophores, which remove iron from the soil and reduce the growth of deleterious soil microorganisms (Kloepper et al., 1980). Nevertheless, from the end of the 1990s, the term plant growth-promoting bacteria was also used (Glick and Bashan, 1997), although plant growth-promoting bacteria also include non-soil microorganisms that inhabit the aerial parts of the plant (Martínez-Rodriguez et al., 2014). This review focuses only on rhizobacteria.

The term PGPR includes three types of soil bacteria, depending on their lifestyle: free-living bacteria inhabiting the zone around the root (rhizosphere), those that colonize the root surface (rhizoplane), and endophytic bacteria that live within roots. However, this division is not exclusive, since any individual bacterial strain might adopt all three lifestyles, depending on the soil environment conditions and the host-root partner involved (Alavi et al., 2013; Mitter et al., 2013).

The group of PGPR therefore includes all bacteria inhabiting the rhizosphere and the rhizoplane that promote plant growth. Clearly, this promotion capacity can be more easily determined under controlled conditions using sterile substrates, but under uncontrolled conditions, the inoculated PGPR will compete with the soil microflora, and sometimes the positive effects are lost (Sturz and Christie, 1995). Despite this, several examples exist, where inoculation by PGPR induced plant growth, including that of vegetables (Table 1), fruit crops (Table 2), and flower and ornamental plants (Table 3).

Rhizobacteria with PG-activity occur in a number of bacterial phyla (Actinobacteria, Proteobacteria and Firmicutes), including strains belonging to genera *Bacillus, Pseudomonas, Azospirillum, Azotobacter, Alcaligenes, Arthobacter, Agrobacterium, Burkholde- ria, Comamonas, Pantoea, Rhizobium, Serratia*, and *Variovorax* (Tables 1–3; Kloepper et al., 1989).

The modes of action of PGPR are clearly diverse and not all bacteria possess the same mechanisms (Dey et al., 2004). These mechanisms vary from changes in hormonal content, the production of volatile compounds, increasing nutrient availability or enhancing abiotic stress tolerance (Choudhary et al., 2011). Since the term biostimulators refers to any substance or microorganisms used to enhance plant growth, but that does not act against pathogens (Calvo et al., 2014), the use of PGPR to control plant diseases will not be covered in this review. The review will firstly outline the different modes of action of PGPR, and then describe the difficulties in isolating PGPR from the soil and finally, will describe the use of PGPR in horticultural crops.

2. Mode of action

2.1. Plant hormonal changes

It is well known that plant growth is regulated in part, by hormonal changes, therefore, one of the possible mechanisms used by PGPR to promote plant growth might be changes in the hormonal content of the host plant. In 1994, Glick et al., found that a *Pseudomonas putida* mutant strain lacking the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase was unable to promote the root growth of canola seedlings (Glick et al., 1994). This provided the first evidence for a role of a reduction in ethylene content by PGPR in increasing plant growth. ACC is the immediate precursor of ethylene, therefore, decreasing the levels of ACC will decrease the levels of ethylene and inhibit the growth reduction effect of this plant hormone (Van de Poel and Van der Straeten, 2014). Some PGPR hydrolyse ACC to ammonia and α-ketobutyrate by the enzyme ACC deaminase, and use the latter as a carbon source (Van de Poel and Van der Straeten, 2014). In fact, several PGPR can lower ethylene levels in the plant host and thereby enhance plant growth (Bal et al., 2013; Chen et al., 2013). Additionally, soil bacteria that can synthesise ethylene have a negative effect on plant growth (Shaharoon et al., 2007). However, Chen et al. (2013) also found that the complete ethylene signal transduction pathway was necessary to enhance *Arabidopsis thaliana* growth by the PGPR *Variovorax paradoxus* strain 5C-2. Therefore, although several PGPRs might enhance plant growth by reducing the ethylene content, the ethylene signaling pathway is also crucial for the action of these other PGPRs (Chen et al., 2013).

Other plant hormones implicated in growth promotion by PGPR are auxins; a positive correlation was found between the in vitro production of auxins by several PGPR strains and their growth-promotion effects (Asghar et al., 2002; Khalid et al., 2004). Auxins are well-characterised plant hormones that promote plant growth, their effects being known since 1939 (Thimann and Schneider, 1939; for review see Enders and Strader, 2015). Therefore, the release of auxins by bacteria can induce plant growth. In fact, auxin efflux carrier genes have been used to detect the activity of some PGPR in the soil (Lim et al., 2011). It has also been shown that several PGPR induce the expression of auxin-responsive genes in host-plant roots (O’Callagan et al., 2001; Lakshmanan et al., 2013). Contesto et al. (2010) showed that the PGPR *Phyllobacterium brasicacearum* caused increased levels of auxins in the host plant, although it was unable to produce auxins, and that the action of this particular PGPR was mediated by the auxin signaling pathway. Therefore, to induce an auxin response in the plant, auxin synthesis by the PGPR is not necessary.

Other plant hormones are also involved in the effects of PGPR in plants, but are less-well studied, including abscisic acid (ABA), cytokinins (CKs) and gibberellins (GAs). The beneficial effects of increasing CK levels in the host plant to the PGPR appears to be via an increase in the excretion rate of root exudates, which contain among other substances, amino acids (Rudoyarova et al., 2014). Abscisic acid is known to reduce plant growth, although a certain amount of ABA is required for normal growth, since it regulates stomatal aperture and therefore water loss and CO₂ uptake (Pospisilova, 2003). Some PGPR can reduce the levels of ABA in the host plant and then indirectly increase plant growth (Belimov et al., 2014). Moreover, a reduction in growth was observed when tomato plants deficient in ABA were inoculated with a *Bacillus megaterium* strain, mainly due to an overproduction of ethylene (Porcel et al., 2014). Thus, the positive effects of PGPR depend on the endogenous levels of ABA of the host plant. Under water-stress conditions, some PGPR can increase the ABA content of host plants and thereby reduce water loss (Salomon et al., 2014). Most recently, Fan et al. (2015) found that *Burkholderia* sp. LD-11 can increase the sensitivity of maize (*Zea mays* L.) plants to ABA. The role of ABA in PGPR action is still not well understood and more researches are required.

Plant hormones cannot be studied in isolation, since they functionally interact with each other in plants and result in a specific response. For example, Liu et al. (2013a) found that a cytokinin-producing *Bacillus subtilis* strain decreased the ABA content of the host plant under optimal watering conditions, to increase stoma-
<table>
<thead>
<tr>
<th>Crop</th>
<th>PGPR (species/strain)</th>
<th>Application mode</th>
<th>Experimental conditions</th>
<th>Effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broccoli</td>
<td>Brevibacillus reuszerii and Rhizobium rubi</td>
<td>Root-dipping of seedlings for 60 min</td>
<td>Field</td>
<td>Increased yield, plant weight, head diameter, chlorophyll content, macronutrient and micronutrient uptake</td>
<td>Yildirim et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas fluorescens and MTCC103</td>
<td>Root-dipping of seedlings for 5 min</td>
<td>Pots, greenhouse conditions</td>
<td>Enhanced plant growth, nutrient uptake and broccoli’s yield when combined with the recommended dose of supersulfate fertilizer</td>
<td>Tanwar et al. (2014)</td>
</tr>
<tr>
<td>Cabbage</td>
<td>Pantoea agglomerans and Rhizobium leguminosarum</td>
<td>Seed-dipping (10^9 CFU ml^-1) before planting</td>
<td>Pots, greenhouse conditions</td>
<td>Enhancement of growth, nutrient, and hormone content</td>
<td>Turan et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>PEPV16</td>
<td>Seed-dipping (1.5×10^8 CFU per seed) before planting</td>
<td>Pots, greenhouse conditions</td>
<td>Increased dry matter of shoots and roots, increased root length and root hair number</td>
<td>Flores-Félix et al. (2013)</td>
</tr>
<tr>
<td>Carrot</td>
<td>P. agglomerans strain FF</td>
<td>Foliar spray (10^8 CFU ml^-1) at ten days interval, for three times during seedling development</td>
<td>Greenhouse conditions (unheated)</td>
<td>Increased plant length, dry matter and mineral content of fruits, as well as number, weight and width of fruits</td>
<td>Dersun et al. (2010)</td>
</tr>
<tr>
<td>Spinach</td>
<td>S. platycladus strain RR-2-5-10^6, Stenotrophomonas rhizophila strain e-p10^7, Pseudomonas extremorientalis strain TSAU20, P. fluorescens strain PCL17511 and SPB2145</td>
<td>Soil drench (10^11 CFU per plant)</td>
<td>Pots, greenhouse conditions</td>
<td>Induced systemic tolerance to drought stress, by maintaining photosynthetic efficiency and root vigor and increasing some of anti-oxidase activities (i.e. superoxide dismutase activity)</td>
<td>Wang et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>Microbial consortium (Bacillus cereus strain AR156, Bacillus subtilis strain SM21, and Serratia sp. strain XY21)</td>
<td>Seed-dipping for 15 min (10^9 CFU ml^-1)</td>
<td>Semi-controlled environmental conditions</td>
<td>Anti-oxidative activity</td>
<td></td>
</tr>
<tr>
<td>Lettuce</td>
<td>Rhizobium leguminosarum biovar phaseoli strain P31, Rhizobium leguminosarum strain VF3SM, Agrobacterium sp., Alcaligenes piechaudii, and Comamonas acidovorans strain 26</td>
<td>Seed-dipping of 60 min (10^11 CFU per seed)</td>
<td>Petri dishes, temperature-controlled growing cabinet</td>
<td>Increased germination, increased length and weight of roots, improved vigor index of germinating seeds</td>
<td>Mangmang et al. (2015a)</td>
</tr>
<tr>
<td></td>
<td>Serratia proteamaculans strain ATCC35475, Rhizobium leguminosarum strain vicieae strain 128CS56, A. brasilense strain Sp245, Pseudomonas mendocina Palleroni strain</td>
<td>Root inoculation</td>
<td>Greenhouse conditions</td>
<td>Alleviated the negative effects of salinity on the plant, increased photosynthesis and total chlorophyll content, stomatal conductance, fresh weight, leaf area, N, P, and K uptake, and activity of some antioxidant enzymes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. brasilense strain Sp245</td>
<td>Seed-dipping for 180 min (10^10 CFU per seed)</td>
<td>Pots, controlled growth chamber</td>
<td>Better germination and increase in the vegetative growth after exposure to NaCl</td>
<td>Barassi et al. (2006)</td>
</tr>
<tr>
<td></td>
<td>P. fluorescens strain IISR-6, IISR-11 and IISR-51</td>
<td>Soil drench (10^3 CFU per plant; two treatments)</td>
<td>Pots, greenhouse conditions</td>
<td>Increase in the plant biomass under moderately and severely saline conditions and increase in the antioxidant enzyme activities in response to severe salinity</td>
<td>Kohler et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Bacilluslicheniformis strain K11</td>
<td>Seed-dipping for 90 min (10^8 CFU per seed)</td>
<td>Pots, greenhouse conditions (under natural light)</td>
<td>Promoted early germination, seedling settlement of seeds and increased leaf dry weight, leaf area and chlorophyll content when plants were grown at 40 mmol·l^-1 NaCl</td>
<td>Fasciglione et al. (2012)</td>
</tr>
<tr>
<td>Pepper</td>
<td>Bacillus strains</td>
<td>Seed-dipping for 60 min and re-inoculation by drenching 7 days later</td>
<td>Petri dishes, temperature-controlled growing cabinet</td>
<td>Increased in the number of leaves, seedling height, and root length</td>
<td>Mangmang et al. (2015b,c)</td>
</tr>
<tr>
<td></td>
<td>P. fluorescens strain IISR-6, IISR-11 and IISR-51</td>
<td>Seed-dipping for 30 min (10^10 CFU ml^-1)</td>
<td>Pots, greenhouse conditions</td>
<td>Increased fresh root and shoot weights, stem diameter, dry root, and dry shoot weights</td>
<td>Kokalis-Burelle et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>Bacilluslicheniformis strain K11</td>
<td>Soil drench (7×10^8 CFU ml^-1 per plant; one treatment)</td>
<td>Pots, greenhouse conditions</td>
<td>Increased root length, total root area, and number of root tips</td>
<td>Paul and Sarma (2006)</td>
</tr>
</tbody>
</table>

* Bacilli.
* Alphaproteobacteria.
* Betaproteobacteria.
* Gammaproteobacteria.
* Actinobacteria.
Table 2
Effects of plant growth-promoting rhizobacteria (PGPR) application on fruit crops.

<table>
<thead>
<tr>
<th>Crop</th>
<th>PGPR (species/strain)</th>
<th>Application mode</th>
<th>Experimental conditions</th>
<th>Effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>Bacillus sp. strain M3a and OSU-142a, Microbacterium sp. strain FS01a, Pseudomonas sp. strain BA-8a (alone or in combinations)</td>
<td>Root-dipping (10^6 CFU mL^{-1})</td>
<td>Field</td>
<td>Increased cumulative yield, fruit weight, shoot length, and shoot diameter in apple cv. Granny Smith and Stark Spur Golden</td>
<td>Karlidag et al. (2007); Atlantas et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>Bacillus sp.a</td>
<td>Foliar application of spores (10^7 spores g^{-1})</td>
<td>Field</td>
<td>Enhanced growth of apple leaves and improved fruit quality parameters (sweetness and moisture content)</td>
<td>Ryu et al. (2011)</td>
</tr>
<tr>
<td>Apricot</td>
<td>Bacillus sp. strain OSU-142a</td>
<td>Foliar application (10^6 CFU mL^{-1})</td>
<td>Field</td>
<td>Increased yield, shoot development and reduced shot-hole disease severity and incidence</td>
<td>Esitken et al. (2002, 2003)</td>
</tr>
<tr>
<td>Banana</td>
<td>Pseudomonas fluorescens strain CHAOa</td>
<td>Soil application of cells (2.5-3.10^8 CFU) with or without chitin (treatment repeated three times)</td>
<td>Field</td>
<td>Increased growth, leaf nutrient contents and yield of banana plants under perennial cropping systems</td>
<td>Kavino et al. (2010)</td>
</tr>
<tr>
<td>Cherry</td>
<td>Pseudomonas sp. strain BA-8a and Bacillus sp. strain OSU-142a (alone or combinations)</td>
<td>Foliar application (spray; 10^6 CFU mL^{-1})</td>
<td>Field</td>
<td>Stimulated plant growth, increased yield per trunk, fruit weight and shoot length and resulted in significant yield increase</td>
<td>Esitken et al. (2006)</td>
</tr>
<tr>
<td>Grape</td>
<td>Pseudomonas putida strain BA-8a and Bacillus simplex strain T7a (alone or combinations)</td>
<td>Grafted plant-dipping (10^6 CFU mL^{-1}) for 60 min</td>
<td>Experimental glasshouse</td>
<td>Increased graft callusing, scion shoot growth, cane hardening, and nursery survival rate, as well as fruitfulness of the grapes in following year</td>
<td>Sabir (2013)</td>
</tr>
<tr>
<td>Hazelnut</td>
<td>N₂-fixing and P-solubilizing bacteria</td>
<td>Seed-dipping (10^6 CFU mL^{-1}) on one-year old seedlings</td>
<td>Pots, greenhouse conditions</td>
<td>Increased seedling and total branch length, branch number, trunk diameter, and nutrient uptake</td>
<td>Erturk et al. (2011)</td>
</tr>
<tr>
<td>Kiwifruit</td>
<td>Bacillus sp.a, Paenibacillus polymyxa and Comamonas acidovorans</td>
<td>Seed-dipping (10^6 CFU mL^{-1}) for 30 min</td>
<td>Greenhouse conditions</td>
<td>Stimulation of rooting and root growth</td>
<td>Erturk et al. (2010)</td>
</tr>
<tr>
<td>Strawberry</td>
<td>Bacillus subtilis strain GB03* and Bacillus amyloliquefaciens strain IN937a</td>
<td>Seed-dipping with a formulation that contains both strains in a 2.5% chitin carrier</td>
<td>Field</td>
<td>Addition of PGPR to plug transplants resulted in healthier roots, earlier and higher total yields</td>
<td>Kokalis-Burelle (2003)</td>
</tr>
<tr>
<td></td>
<td>Bacillus sp. FS-3a</td>
<td>Root drench (3.5 × 10^7 cell g^{-1}), repeated five times within 7-D intervals</td>
<td>Pots, greenhouse conditions</td>
<td>Increased fruit and leaf nutrient concentrations (N, P, K, Ca, and Fe)</td>
<td>Güneş et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Azospirillum brasilense strain REC3*, RLC1*, PEC5</td>
<td>Seed-dipping (10^6 CFU mL^{-1}) for 30 min</td>
<td>Field</td>
<td>Increased root length, root area, and dry weight of root and shoot</td>
<td>Pedraza et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas sp. strain BA-8a and Bacillus sp. strain OSU-142a and M3a (alone or combinations)</td>
<td>Root-dipping (10^6 CFU mL^{-1}) for 30 min or foliar application</td>
<td>Field</td>
<td>Increased fruit yield, plant growth, phosphorus and zinc content of leaves</td>
<td>Esitken et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Bacillus sphaericus GC subgroup A strain EY30*, Staphylococcus kloosii strain EY37* and Kocuria erythromyxa strain EY43*</td>
<td>Root-dipping (10^6 CFU mL^{-1}) for 30 min</td>
<td>Pots, greenhouse conditions</td>
<td>Increased plant growth, fruit yield, chlorophyll content, relative water content of leaves, mineral uptake (N content of leaves and P content of roots), and reduced membrane injury under saline conditions (35 mM NaCl)</td>
<td>Karlidag et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>P. fluorescens strain P4*, Pseudomonas sp. strain 5VN1K</td>
<td>Root-drench with the two PRGB (5.10^6 CFU) and/or with arbuscular mycorrhizal fungi</td>
<td>Pots, greenhouse conditions</td>
<td>Increased anthocyanin concentration in fruits of plants grown under conditions of reduced fertilization</td>
<td>Lingua et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>Alcaligenes sp. strain G37Ca*</td>
<td>Seed-dipping (10^6 CFU mL^{-1}) on one-year old seedlings</td>
<td>Pots, greenhouse conditions</td>
<td>Increased fruit yield, number and weight under high calcareous soil conditions</td>
<td>Ipek et al. (2014)</td>
</tr>
<tr>
<td>Walnut</td>
<td>Pseudomonas chlororaphis*</td>
<td>Root-dipping (10^6 CFU mL^{-1}) for 30 min</td>
<td>Greenhouse conditions</td>
<td>Increased plant height, shoot and root dry weight, phosphorus and nitrogen uptake</td>
<td>Yu et al. (2012)</td>
</tr>
</tbody>
</table>

2.2. Volatile organic compounds

Several PGPR emit volatile organic compounds (VOCs), which promote plant growth (Table 4; Baily and Weisskopf, 2012). These VOCs have been largely studied in relation to their function as inducers of resistance against plant pathogens (Farag et al., 2013). However, they also promote plant growth in the absence of pathogens, and can confer tolerance against abiotic stresses (Bhattacharyya et al., 2015). The VOCs for which a plant growth promotion effect has been confirmed by using bacterial mutants.
Table 3
Effects of plant growth-promoting rhizobacteria (PGPR) application on flower and ornamental plants.

<table>
<thead>
<tr>
<th>Crop</th>
<th>PGPR (species/strain)</th>
<th>Application mode</th>
<th>Experimental conditions</th>
<th>Effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broom</td>
<td>Variorox paradoxus SC-2³</td>
<td>Root drench</td>
<td>Pots, temperature controlled glasshouse and regulated deficit irrigation conditions</td>
<td>Reduced level of ethylene production, leaf necrosis and abscission under drought stress</td>
<td>Sharp et al. (2011)</td>
</tr>
<tr>
<td>Chrysanthemum</td>
<td>Pseudomonas fluorescens strain 51³</td>
<td>Soil drench (10³ CFU per plant)</td>
<td>Pots, greenhouse conditions</td>
<td>Increased plant height, leaf area and number of flowers per plant</td>
<td>Göre and Altin (2006)</td>
</tr>
<tr>
<td>Dahlia</td>
<td>P. fluorescens strain 51³</td>
<td>Soil drench (10³ CFU per plant)</td>
<td>Pots, greenhouse conditions</td>
<td>Increased root length and number of flowers per plant. Enhancement in fresh and dry weight</td>
<td>Göre and Altin (2006)</td>
</tr>
<tr>
<td>Gladiolus</td>
<td>Bacillus group³</td>
<td>Foliar spray</td>
<td>Field, sodic soil conditions</td>
<td>Induced salt tolerance and improvement of growth characters (plant height, spike length, number of floret, corm weight and diameter)</td>
<td>Damodaran et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>Azospirillum sp.,³⁴</td>
<td>Cerm dip for 30 min in the bacterial suspension followed by shade drying before planting</td>
<td>Field</td>
<td></td>
<td>Qasim et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>Azospirillum sp.,³⁴</td>
<td>Lignite based cultures used at 8 kg ha⁻¹ each</td>
<td>Field</td>
<td>In combination with Trichoderma viridae, improved flower yield, flower quality characteristics, chlorophyll content, and total microbial population in the rhizosphere</td>
<td>Jayamma et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>P. fluorescens strain 51³</td>
<td>Soil drench (10³ CFU per plant)</td>
<td>Field</td>
<td></td>
<td>Göre and Altin (2006)</td>
</tr>
<tr>
<td></td>
<td>P. fluorescens strain WCCS417³⁴</td>
<td>Plant exposed to bacterial volatile organic compounds without physical contact</td>
<td>Petri dishes, growth chamber with controlled conditions of light, temperature and relative humidity</td>
<td>Increased plant height, leaf area and number of flowers per plant</td>
<td>Santoro et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Azospirillum lipoferum³⁵ and Bacillus polymyxa³⁵</td>
<td>Foliar spray</td>
<td>Pots, greenhouse conditions</td>
<td>Increased plant height, leaf area and root dry weight, flowering date, number of flower/branch, and flowering period</td>
<td>El-Mokadem and Mona (2014)</td>
</tr>
<tr>
<td></td>
<td>Azospirillum braulsiense strain C³⁶ and Sp³⁶ combined with auxin inductive pulses</td>
<td>Direct inoculation of shoots (10³ CFU per shoot)</td>
<td>Pots, growth chambers</td>
<td>Earlier rooting of photinia shoots; increased root fresh and dry weight, root surface area and shoot fresh and dry weight</td>
<td>Larraburu et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>P. fluorescens strain E³⁶</td>
<td>Root-dipping of seedlings (10³ CFU ml⁻¹)</td>
<td>Pots, greenhouse conditions</td>
<td>Effect on root microflora that determined an enhancement of plant growth</td>
<td>Yuen and Schroth (1986)</td>
</tr>
</tbody>
</table>

Table 4
Volatile-mediated effects of plant growth-promoting rhizobacteria (PGPR) on plants.

<table>
<thead>
<tr>
<th>VOC</th>
<th>PGPR (species/strain)</th>
<th>Plant</th>
<th>Effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3-butanediol and 3-hydroxy-2-butanoine (acetoin) Indole</td>
<td>Bacillus subtilis strain CB03, Bacillus amylophilusfaciens strain INN937a</td>
<td>Arabidopsis thaliana</td>
<td>Increased leaf surface area and induced systemic resistance (ISR)</td>
<td>Ryu et al. (2003)</td>
</tr>
<tr>
<td>Mixture of volatile compounds including β-Caryophyllene</td>
<td>Fusarium oxysporum and a bacterial consortium consisting of Gammapruteobacteria (96%), Alphaproteobacteria (2%), Betaproteobacteria (1%) and Firmicutes (1%)</td>
<td>Lettuce</td>
<td>Induced shoot length, root length, and fresh weight of lettuce seedings</td>
<td>Minerd et al. (2011)</td>
</tr>
<tr>
<td>Mixture of volatile compounds</td>
<td>Pseudomonas pallidiora strain R43631, Bacillus sp. strain R47065, R47131, Paenibacillus sp. strain B3aR45941, Bacillus simplex strain M3-4 R49538</td>
<td>Potato</td>
<td>Increased potato yield in field conditions (more evident at the lower fertilizer level)</td>
<td>Velivelli et al. (2014)</td>
</tr>
</tbody>
</table>

Unable to synthesize these particular VOCs or by application of the pure compounds (Ryu et al., 2003).

Apart from the VOCs shown in Table 4, other VOCs have been identified as the putative causal agents of the growth promotion by PGPR (Kanchiswamy et al., 2015). Among these VOCs, 2-pentylfluran was shown to increase A. thaliana fresh weight, with an optimum dose of 10 µg (Zou et al., 2010). Almost all the studies performed to date concerning the effects of VOCs on plant growth have been carried out using A. thaliana as a target for bacterial volatiles (Baillie and Weisskopf, 2012). This is because to ascribe a PGPR effect to VOCs, no contact between the bacteria and the roots can occur, therefore, this type of experiment has been performed in vitro using a divided petri dish setup, where the bacteria or plant are present on two different compartments and are not in direct contact. Kai and Piechulla (2009) proposed that the VOC effects of PGPR might be caused by CO₂ released by the bacteria. Therefore, although the composition of VOCs has been determined in several experiments, and some compounds have been proven to promote growth, it is not possible to conclude that PGPR activity is due to a specific VOC, apart from the use of bacterial mutants lacking the
synthesis of a specific VOC. Moreover, it should be considered that many VOCs exert inhibitory effects on plant growth at high concentration and some of them are toxic (Bailly and Weißkopf, 2012). Thus, for a proper field application of VOCs, either by exposing crops to volatiles or inoculating plants with volatile-producing bacteria, it is essential to elucidate the signaling cascades and the subsequent metabolic changes that are triggered in the plant by VOCs.

Another important point to mention is that recent studies performed in the open field indicated that the effect of volatile compounds varies from laboratory to field conditions. For instance, drench treatment of cucumber with 2,3-butanediol (2,3-BD)-related compounds, 3-pentanol and 2-butanoate, was effective in eliciting induced resistance against aphids and bacterial pathogens at field conditions, but had no effect on plant growth, other than an unexpected increase in fruit yields (Song and Ryu, 2013). 2,3-BD and its precursor acetoin are the two most abundant compounds released from B. subtilis GB03 and B. amyloliquefaciens IN937a, two PGPR strains present in a commercially available formulation (BioYield®) that consistently increase the growth and yield of cucumbers, peppers, and tomatoes (Kloepfer et al., 2004). Thus, it is necessary to test VOCs on different crop species both at laboratory and field conditions to evaluate their ability to modulate growth and defense of crop plants and to assess their resulting outcomes on plant growth and productivity. In addition to studies in A. thaliana, Santoro et al. (2011) found that VOCs from several PGPR could increase the production of essential oils in peppermint (Mentha piperita Huds.) plants. Thus, VOCs-producing PGPR can be used in horticultural crops, even though the specific compound or the mixture of compounds that causes the growth promotion are unknown. For example, Velivelii et al. (2014) identified VOCs from Andean rhizobacteria with in vitro antagonistic activity against the potato pathogen Rhizoctonia solani and positive effects of selected rhizobacterial inoculants on potato tuber growth under field conditions, but were unable to elucidate possible synergistic or antagonistic effects of the different compounds of the mixture. Nevertheless, results from their trials in Bolivia, Ecuador and Peru clearly demonstrated that it is possible to evaluate the relevance of rhizobacterial volatiles in agronomical contexts performing open field experiments in different geographical locations and under different climatic conditions and seasons. A general conclusion that can be drawn from this example is that the formulation of an inoculant that is compatible with routine field practices, which gives reproducible results under different field conditions and types of soil and on different crops, and is safe for humans, non-targeted plants, animals, and the environment, requires both greenhouse and open field experiments.

2.3. Nutrient availability and uptake by plants

It has been known for a long time that inoculation with PGPR can increase the nutrient concentration in the host plant (Canbolat et al., 2006; Wani et al., 2007; Lai et al., 2008); however, the mechanisms that underlie this effect are far from elucidated. Moreover, each nutrient element responds differentially. To favour nitrogen (N) uptake by plants, free-living bacteria able to grow in media without the addition of N were selected (Canbolat et al., 2006), and these bacteria subsequently increased N uptake by the plant and the tissue N concentration, mainly because more nitrogen was available in the soil (Canbolat et al., 2006). In contrast, other free-living bacteria that were able to fix atmospheric nitrogen (N2), did not subsequently increase the N concentration in the host plant (Lai et al., 2008), because not all bacterial traits selected in vitro are also expressed in vivo. This will be discussed in the following section. The facilitation of N uptake and assimilation by PGPR are not only due to their nitrogen-fixing ability; Parra-Cota et al. (2014) found that in addition to fixing N2, the PGPR Burkholderia ambifaria increased the expression of the nitrate transporter NRT1 in amaranth (Amaranthus hypochondriacus L.) plants. Mantelin et al. (2006) had previously shown that the PGPR Phyllobacterium sp. decreased the expression of several nitrate transporters, but increased the expression of others, depending on the external nitrate concentration. Therefore, some PGPR cause plants to respond differently to the external N concentration, to potentially maximize N availability (Mantelin et al., 2006). Growth promotion by PGPRs is actually enhanced under non-fertilized conditions (Mantelin et al., 2006; Parra-Cota et al., 2014). It has also been shown that exudates from nutrient-deficient plants (especially N- and P-deficient plants) modify the transcriptome of the PGPR B. amyloliquefaciens (Carvalhais et al., 2013).

Similar to N, several PGPR can solubilise phosphates (Canbolat et al., 2006; Lai et al., 2008), resulting in an increased availability of phosphate (P) in the soil that can be taken up by the plant. Recently, Talboys et al. (2009) found that a strain of B. amyloliquefaciens increased root growth of wheat (Triticum aestivum L.) plants but also decreased the uptake rate of inorganic phosphate (Pi) under P-deficiency conditions, most probably as a compensatory mechanism. This decrease in Pi uptake was correlated with a down-regulation of Pi transporter genes, and an up-regulation of Pi remobilizing genes, which were all controlled by auxin release by the bacteria. Some PGPR can facilitate the uptake of potassium (K) by the plant host (Bertrand et al., 2000; Singh et al., 2010), due to the ability of some PGPR to release K from its immobile forms in the soil (Liu et al., 2013b) and thus, to increase the availability of K in the soil (Sheng, 2005). This better acquisition of K also is involved with the higher salt-stress tolerance of plants inoculated with some PGPR, which limit the deleterious effects of sodium ions (Abd El-Azeem et al., 2012; Nadeem et al., 2013). The effects of PGPR on the assimilation of other nutrients and deeper explanations about nutrient assimilation and PGPR are discussed Pii et al. (2015).

2.4. Abiotic stress tolerance in plants

Timmsk and Wagner (1999) described how the PGPR Paenibacillus polymyxa enhanced drought tolerance in A. thaliana plants. However, these experiments were performed in vitro, and the drought treatment consisted of leaving the petri-dish open for three days. Subsequently, Pischik et al. (2002) reported that three different PGPR could attenuate the toxic effect of cadmium pollution on the barley yield, mostly because these bacteria could remove cadmium ions from the soil by binding mechanisms, thereby decreasing cadmium availability in the soil. The mechanisms behind the higher tolerance of plants to several abiotic stresses following inoculation by some PGPR are extremely broad. This section will focus on effects on the antioxidant system and the alleviation of stress caused by leaf dehydration. Other mechanisms have been described in previous sections, such as the regulation of hormonal changes or improvements in nutrient acquisition. It should be borne in mind that all the mechanisms are interconnected, and all favour to some extent the promotion of growth and tolerance to abiotic stress conferred by PGPR (Zhu and Gong, 2014).

Almost all stresses cause an increase in the production of reactive oxygen species (ROS) and subsequent oxidative damage (Gill and Tuteja, 2010). Oxidative damage can be alleviated by limiting the production of ROS, or by improving the ability to remove them (Gill and Tuteja, 2010; Pinto-Marijuan and Munne-Bosch, 2014). The best-known mechanism to reduce the production of ROS is the dissipation of excess of energy in the chloroplasts via carotenoids, especially via the xanthophyll cycle (Bassi and Caffarri, 2000). No information is available concerning the effect of PGPR on the xanthophyll cycle; however, several studies observed an increase in the carotenoid content of plants inoculated with PGPR (Tiwari et al.,
Nevertheless, there is no evidence for the role of carotenoids in the enhancement of abiotic stress tolerance in plants by PGPR, which will necessitate reverse genetic studies.

Cakmakci et al. (2007) found that the PGPR strains that increased glutathione reductase activity in wheat plants to the greatest extent, also promoted higher growth. However, this relationship was not confirmed in spinach plants using the same PGPR strain. Glutathione reductase is an enzyme that reduces oxidized glutathione to be reused as an antioxidant compound (Gill and Tuteja, 2010). Therefore, the mechanism of action of different PGPR varies, depending on the host plant. Nautiyal et al. (2008) found that the PGPR Bacillus lentimorbus increased the antioxidant capacity of the edible parts of lettuce, spinach and carrot plants, as well as caused an increase in growth. These results are important, to improve the nutrient content of these horticultural crops.

Although an enhancement of the antioxidant capacity of plants inoculated with some PGPR has been observed at the biochemical level, molecular studies remain scarce. Recently, Sarma and Saikia (2014) demonstrated that a strain of Pseudomonas aeruginosa improved the growth of Vigna radiata plants under drought conditions and also increased the activity of several antioxidant enzymes: an increase in the activity of catalase (an enzyme that removes hydrogen peroxide) was correlated with the up-regulated expression of the catalase1 gene. The involvement of the antioxidant system in the induction of abiotic stress resistance by PGPR needs to be investigated using reverse genetic analyses, via plants that lack single or multiple components of this system.

Another important effect of PGPR inoculation on plants under abiotic stress conditions is the improvement of leaf water status, especially under drought and salt stress (Ahmad et al., 2013; Naveed et al., 2014). To maintain a constant water status under stress conditions, plants need to balance water-loss by the leaves (which is mostly regulated by the stomatal aperture) and water taken up by the roots. In the two studies cited above, stomatal conductance was higher in inoculated plants than in non-inoculated ones under stress conditions. In other studies, the leaf transpiration rate hardly changed following inoculation with PGPR, but growth was increased (Stefan et al., 2013). Therefore, PGPR-inoculated plants tend to have higher values of water-use efficiency (the ratio between the gain in dry weight and water consumed; Stefan et al., 2013; Naveed et al., 2014). This interesting trait could be exploited to save water in environmentally friendly horticulture.

Another factor that regulates plant water status is the ability to absorb water by roots. Marulanda et al. (2010) demonstrated that inoculation with a B. megaterium strain increased the ability of maize roots to absorb water under salt stress conditions. This increased ability was associated with a higher gene expression and protein abundance of some plasma-membrane aquaporins (membrane proteins implicated in the transport of water across cell membranes, see Li et al., 2014). More recently, Gond et al. (2015) also observed an increase in the expression of aquaporin genes in the roots of maize plants inoculated with Pantoaea agglomerans under salt conditions. Thus, some aquaporin genes might be involved in the enhancement of stress tolerance by some PGPR, but this hypothesis needs to be validated using aquaporin mutants.

Multiple effectors govern the response of plants to PGPR inoculation, which are interconnected. One of the next steps in the study of PGPR is to understand which plant genes are involved in the response of plants to PGPR, considering that each plant–PGPR combination might behave differently, increasing the difficulty of such studies. In the following sections, criteria for the selection of PGPR strains and their validity are described and discussed, together with examples of the effects of PGPR on horticultural crops, including ornamental plants and application methods.

3. Selection of PGPR

Based on the mode of action described above for PGPR, several bacterial traits can be used to select a candidate PGPR strain isolated from the rhizosphere of several plant species. The bacteria pre-selected might thus originate from the rhizosphere soil, from the rhizoplane or from within the root, and all might demonstrate PGPR activity, independent of the lifestyle (da Costa et al., 2014). The most common bacterial traits that have been screened are auxin production, ACC deaminase activity, P solubilisation, the ability to fix N2, and siderophore production. Several examples of the use of these different traits are shown in Table 5. The percentage of isolated bacteria that demonstrate PGPR-activity varies from very few (about 5%) to 100% (Table 5).

However, cases where 100% PGPR activity was observed might be because only active bacteria were shown in the publication and the number of isolates in fact was low (four to six isolates; Aslantas et al., 2007; Ipek et al., 2014). In the study of Ipek et al. (2014), in addition to the common bacterial traits shown in Table 5, five out of six isolates also showed the ability to solubilise calcium carbonate. Ipek et al. (2014) grew strawberry plants in a calcareous soil, thus, this ability was potentially crucial. Bacteria without the ability to solubilise calcium carbonate also increased the yield of strawberry plants, although the quality of the berries was lower than that of plants inoculated with other bacteria.

The exact mechanism by which PGPR promote plant growth in different crops and under different environmental conditions is not fully understood, though it is becoming clear that some or all the plant growth promoting traits do not work independently of each other but additively (Ahmad and Kibret, 2014). The most general conclusion that can be drawn from the above example is that to isolate effective PGPR is better to analyze the soil characteristics where the plants will be grown and the specific requirements of the particular crop, and then to identify bacterial traits that might be beneficial to these particular conditions (Ipek et al., 2014).

4. Effects of PGPR on horticultural crops

Tables 1–3 show examples where PGPR application increased the yield of horticultural crops in laboratory, greenhouse or field conditions. For vegetable crops, most experiments were carried out in greenhouse and only in few cases, with lettuce, pepper, potato and tomato, similar experiments were also performed in open field conditions (Table 1). Interestingly, in the latter cases inoculation with PGPR always determined an increase in plant root length and plant productivity, which is a good evidence of the efficacy of candidate PGPR strains that were tested. In contrast, several experiments with fruit crops, as expected, were carried out in open field conditions and PGPR formulations, in these cases, were applied as a foliar spray (Table 2). Bacterial strains used as PGPR with fruit crops mainly belong to the genus Pseudomonas and Bacillus and some of these strains (i.e. Bacillus sp. OSU-142) determined beneficial effects (increased yield, weight and quality parameter of fruits) on several crops (apple, apricot, cherry and strawberry) in field conditions (Table 2).

As mentioned in the Section 1, one of the problems in the use of PGPR in horticultural production is the persistence of the PGPR in the soil following application, and the survival of the bacteria in the inoculation formulation during storage. For instance, Aslantas et al. (2007) found up to a 2.4-fold higher yield in an apple-tree orchard two years after Pseudomonas spp. application, demonstrating that the effect of PGPR application was persistent over time. The method of inoculation used by Aslantas et al. (2007) was to inoculate the plants by dipping the roots into the bacterial suspension for 60 min before transplanting the young trees. Stefan et al. (2013) found up
to a 1.3-fold higher yield of bean following the simultaneous inoculation with two PGPR strains. In this case, the inoculation method consisted of soaking the seeds in the bacterial culture medium prior to sowing. In each of the above cases, the persistence of the introduced bacteria in the soil or in the roots was monitored. Very few studies have analysed the persistence of bacteria introduced at harvest time, partly due to the difficulty in recovering the specific strain inoculated (Von Felten et al., 2010).

The inoculation methods described above are not practical from a commercial point of view, since they involve fresh bacterial medium. Therefore, techniques that facilitate the use of dry inocula are crucial to extend the use of PGPR in horticulture. One of these techniques is the encapsulation procedure, which consists of immobilizing bacterial cells within a polymer matrix. The most common polymer matrix used is calcium alginate, which in some cases also contains other substances, such as humic acids, skimmed milk, starch or bentonite (Young et al., 2006; Minaxi, 2011; Wu et al., 2012). A further common method of inoculation is to inoculate seeds with alginate beads (Grandlic et al., 2009). The most important advantage of using encapsulated PGPR is not the improvement in the inoculation efficiency (Young et al., 2006; Minaxi, 2011), but the ability to store them for several months, during which time, cell release is maintained and the bacteria are protected from predation and other environmental constraints. A comprehensive review on this topic (Bashan et al., 2014) sets the scene to apply knowledge about inoculation methods in the field.

This review has cited several examples concerning the effect of PGPR on vegetables or fruit plants. However, another relevant horticultural aspect is the propagation of flower and ornamental plants, including representative members of Asteraceae (Chrysanthemum Dahlia, Zinnia), Geraniaceae (Pelargonium), Iridaceae (Gladiolus), Oleaceae (Jasmine) and Solanaceae (Petunia). As shown in Table 3, PGPR strains used with these plants mainly belong to Pseudomonas and Azospirillum genus and, in most cases, a relevant effect of the inoculation with PGPR is an increase in the number of flowers per plant. Azospirillum brasilense strains were also used, in combination with indole-3-butyric acid, to induce the early rooting of Photinia shoots (Larraburu et al., 2007). Interestingly, inoculation with A. brasilense strains also increased the shoot and root fresh weight of the propagated plants (Table 3). Similar results with the same A. brasilense strains were observed in the propagation of Hankroanthus impetiginosus (Larraburu and Llorente, 2015).

Moreover, PGPR have been used after the transplantation of ornamental plants and Sharp et al. (2011) found that inoculated plants of Cytisus × praecox and Aquilegia × hybrida were more tolerant to drought stress than non-inoculated plants and showed less necrosis, less leaf abscission and fewer flowers.

5. Conclusions and perspectives

It is clear that the use of PGPR as biostimulants in horticulture is a reality. Although several physiological studies have been performed and much knowledge has been generated, the molecular mechanisms that underlie this growth promotion effect are far from understood. This lack of knowledge applies to both bacteria and plant partners. Although some progress has been made on the bacterial side, including VOC experiments (Table 4) or the involvement of the ACC deaminase enzyme (Ali et al., 2014), the study of other bacterial traits is required. On the plant side, several transcriptomic and proteomic studies have been performed, but these have not been conclusive. More recently, the use of knock-out mutants of A. thaliana that lack gene functions implicated in the ethylene response have shown the importance of this pathway in PGPR-activity (Chen et al., 2013). In the future, these studies need to be applied to horticultural crop species.

References

Table 5

<table>
<thead>
<tr>
<th>Reference</th>
<th>Auxin production</th>
<th>ACC deaminase</th>
<th>P solubilization</th>
<th>N₂ fixation</th>
<th>Siderophores production</th>
<th>Positive (%)</th>
<th>PGPR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stefan et al. 2013</td>
<td>*</td>
<td>+</td>
<td>n.d.</td>
<td>+</td>
<td>n.d.</td>
<td>88</td>
<td>8</td>
</tr>
<tr>
<td>Aslantas et al. 2007</td>
<td>*</td>
<td>n.d.</td>
<td>n.d.</td>
<td>+</td>
<td>n.d.</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Cakmakci et al. 2007</td>
<td>*</td>
<td>n.d.</td>
<td>n.d.</td>
<td>+</td>
<td>n.d.</td>
<td>100</td>
<td>89</td>
</tr>
<tr>
<td>Rodrigues et al. 2008</td>
<td>*</td>
<td>n.d.</td>
<td>n.d.</td>
<td>+</td>
<td>n.d.</td>
<td>84</td>
<td>16</td>
</tr>
<tr>
<td>Ilpek et al. 2014</td>
<td>*</td>
<td>+</td>
<td>n.d.</td>
<td>+</td>
<td>n.d.</td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

* Percentage of isolates that at least had one of the characteristics.

+ Percentage of isolates that had PGPR-activity.

* means that the trait was checked. n.d. non determined.

