Yoav Bashan, Ph.D.

TYPE OF PUBLICATIONS

PEER-REVIEWED PUBLICATIONS IN SCIENTIFIC JOURNALS

CHAPTERS IN BOOKS AND PUBLICATIONS IN CONFERENCE'S BOOKS

PUBLICATIONS IN LANGUAGES OTHER THAN ENGLISH

POPULAR SCIENTIFIC PUBLICATIONS

COVER PAGES OF JOURNALS

Publications with blue marking on the journal name are available as PDF files. To view the pdf files, you need to have installed "Acrobat Reader". Other papers are available as a reprint request by mail. to Dr. Yoav Bashan, Environmental Microbiology, CIB. C.P. 23086, La Paz, B. C. S., México.

"You have requested access to material protected by copyright. We considered your request as "reprint request" as is common in the scientific community. When you download a PDF, you agree to download one copy for personal and scientific use only. Commercial use or duplication is not allowed unless a permission from the copyright owner is granted."

Publications in green are reviews published in peer-reviewed scientific journals

Donation of information by Yoav Bashan

PEER-REVIEWED PUBLICATIONS IN SCIENTIFIC JOURNALS

    2017

  1. Amavizca, E., Bashan, Y., Ryu, C.-M., Farag, M.A., Bebout, B.M., and de-Bashan, L.E. 2017. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus. Scientific Reports-Nature. 7: 41310.

  2. Huang, P., de-Bashan, L. E., Crocker, T., Kloepper, J.W., and Bashan, Y. 2017. Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo)bacteria on growth promotion of crop plants. Biology and Fertility of Soils. 53:199–208.

  3. Bashan, Y., Huang, P., Kloepper, J.W., and de-Bashan, L.E. 2017. A proposal for avoiding fresh-weight measurements when reporting the effect of plant growth-promoting (rhizo)bacteria on growth promotion of plants. Biology and Fertility of Soils. 53:1–2.

    2016

  4. Bacilio, B., Moreno, M., and Bashan, Y. 2016. Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a salt-susceptible pepper. Applied Soil Ecology. 107: 394–404.

  5. Posada, L.F., Alvarez, J.C., Hu, C.H., de-Bashan, L.E., and Bashan, Y. 2016. Construction of probe of the plant growth-promoting bacteria Bacillus subtilis useful for fluorescence in situ hybridization. Microbiological Methods. 128: 125-129. Supplementary material.

  6. Bashan, Y., and de-Bashan, L.E. 2016. Encapsulated formulations for microorganisms in agriculture and the environment. Bioencapsulation Innovations. 5: 4-5.

  7. Lopez-Lozano, N.E., Carcaño-Montiel, M.G., and Bashan, Y. 2016. Using native trees and cacti to improve soil potential nitrogen fixation during long-term restoration of arid lands. Plant And Soil. 403: 317–329.

  8. Palacios, O., Gomez-Anduro, G., Bashan, Y., and de-Bashan, L.E. 2016. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. FEMS Microbiology Ecology. Doi: 10.1093/femsec/fiw077.

  9. Palacios, O.A., Choix, F.J., Bashan, Y., and de-Bashan, L.E. 2016. Influence of tryptophan and indole-3-acetic acid on starch accumulation in the synthetic mutualistic Chlorella sorokinianaAzospirillum brasilense system under heterotrophic conditions. Research in Microbiology. 167:367-379.

  10. Palacios, O.A., Bashan, Y., Schmid, M., Hartmann, A., and de-Bashan, L.E. 2016. Enhancement of thiamine release during synthetic mutualism between Chlorella sorokiniana and Azospirillum brasilense growing under stress conditions. Journal of Applied Phycology. 28:1521–1531.

  11. de-Bashan, L.E., Mayali, X., Bebout, B.M., Weber, P.K., Detweiler, A., Hernandez, J.P., Prufert-Bebout, L., and Bashan, Y. 2016. Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization). Algal Research. 15: 179–186.

  12. Bashan, Y., Kloepper, J.W., de-Bashan, L.E., and Nannipieri, P. 2016. A need for disclosure of the identity of microorganisms, constituents, and application methods when reporting tests with microbe-based or pesticide-based products. Biology and Fertility of Soils 52: 283–284.

  13. Bashan Y., Lopez, B.R., Huss, V.A.R., Amavizca, E. and de-Bashan, L.E. 2016. Chlorella sorokiniana (formerly C. vulgaris) UTEX 2714, a non-thermotolerant microalga useful for biotechnological applications and as a reference strain In: Journal of Applied Phycology 28: 113-121

  14. Pereg, L., de-Bashan, L.E., and Bashan, Y. 2016. Assessment of affinity and specificity of Azospirillum for plants. Plant And Soil 399:389–414

    2015

  15. Meza, B., de-Bashan, L.E., Hernandez, J. P., and Bashan, Y. 2015 Accumulation of intra-cellular polyphosphate in Chlorella vulgaris cells is related to indole-3-acetic acid produced by Azospirillum brasilense. Research in Microbiology 166: 399-407

  16. Leyva, L.A., Bashan Y., and de-Bashan, L.E. 2015. Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgaris is co-immobilised with Azospirillum brasilense in alginate under autotrophic and heterotrophic conditions. Annals of Microbiology 65: 339-349

  17. Meza, B., de-Bashan, L.E., and Bashan, Y. 2015 Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris. Research in Microbiology 166: 72-83

    2014

  18. Leyva, L.A., Bashan Y., Mendoza, A., and de-Bashan, L.E. 2014. Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense. Naturwissenschaften 101:819–830

  19. Choix, F.J., Bashan, Y., Mendoza, A., and de-Bashan, L.E. 2014. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. Journal of Biotechnology 177: 22-34

  20. Bashan, Y., de-Bashan, L.E., Prabhu, S.R., and Hernandez, J.-P. 2014. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). (A Marschner Review). Plant and Soil 378: 1-33

  21. Palacios, O.A., Bashan, Y., and de-Bashan, L.E. 2014. Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview. Biology and Fertility of Soils 50: 415-432

    2013

  22. Cruz, I., Bashan, Y., Hernandez-Carmona, G., and de-Bashan, L.E. 2013. Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Applied Microbiology and Biotechnology 97: 9847-9858

  23. Lopez, B.R., Bashan, Y., Trejo, A., and de-Bashan, L.E. 2013. Amendment of degraded desert soil with wastewater debris containing immobilized Chlorella sorokiniana and Azospirillum brasilense significantly modifies soil bacterial community structure, diversity, and richness. Biology and Fertility of Soils 49: 1053-1063

  24. Bashan, Y., Kamnev, A.A., de-Bashan, L.E. 2013. Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biology and Fertility of Soils 49: 465-479 DOI: 10.1007/s00374-012-0737-7.

  25. Bashan, Y., Moreno, M., Salazar, B.G., and Alvarez, L. 2013. Restoration and recovery of hurricane-damaged mangroves using the knickpoint retreat effect and tides as dredging tools. Journal of Environmental Management 116: 196-203

  26. Bashan, Y., Kamnev, A.A., and de-Bashan, L.E. 2013. A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biology and Fertility of Soils 49: 1-2.

    2012

  27. Lopez, B.R., Tinoco-Ojanguren, C., Bacilio, M., Mendoza, A., and Bashan, Y., 2012. Endophytic bacteria of the rock-dwelling cactus Mammillaria fraileana affect plant growth and mobilization of elements from rocks. Environmental and Experimental Botany 81: 26-36

  28. Trejo, A., de-Bashan, L.E., Hartmann, A., Hernandez, J.P., Rothballer, M., Schmid, M. and Bashan, Y. 2012. Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environmental and Experimental Botany 75 : 65-73

  29. Covarrubias, S.A., de-Bashan, L.E., Moreno, M., and Bashan, Y. 2012. Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Applied Microbiology and Biotechnology 93: 2669-2680
    The definitive version is available electronically on SpringerLink: http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00253-011-3585-8

  30. Bashan, Y., Salazar, B. G., Moreno M., Lopez, B. R. and Linderman, R. G. 2012 Restoration of eroded soil in the Sonoran Desert with native leguminous trees using plant growth-promoting microorganisms and limited amounts of compost and water. Journal of Environmental Management 102 : 26-36

  31. Choix, F. J., de-Bashan, L.E. and Bashan, Y. 2012 Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic conditions. Enzyme and Microbial Technology 51: 294–299

  32. Choix, F. J., de-Bashan, L.E. and Bashan, Y. 2012 Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions. Enzyme and Microbial Technology 51: 300–309

  33. de-Bashan L.E., Hernandez, J. P. and Bashan, Y. 2012. The potential contribution of plant growth-promoting bacteria to reduce environmental degradation – A comprehensive evaluation. Applied Soil Ecology 61: 171-189

    2011

  34. Vovides, A. G., Bashan, Y., Lopez-Portillo, J. A. and Guevara, R. 2011 Nitrogen fixation in preserved, reforested, naturally regenerated and impaired mangroves as an indicator of functional restoration in mangroves in an arid region of Mexico. Restoration Ecology 19: 236–244

  35. Perez-Garcia, O., Bashan, Y., and Puente M.E. 2011. Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. Journal of Phycology 47: 190-199.

  36. Bacilio, M., Vazquez, P., and Bashan, Y. 2011. Water versus spacing: A possible growth preference among young individuals of the giant cardon cactus of the Baja California Peninsula. Environmental and Experimental Botany 70: 29-36

  37. Bashan, Y., Trejo, A. and de-Bashan, L.E. 2011. Development of two culture media for mass cultivation of Azospirillum spp. and for production of inoculants to enhance plant growth. Biology Fertility of Soil 47: 963-969

  38. Vovides, A.G., Lopez-Portillo, J., and Bashan, Y. 2011. N2-fixation along a gradient of long-term disturbance in tropical mangroves bordering the gulf of Mexico. Biology and Fertility of Soils 47: 567–576

  39. Lopez, B.R., Bashan, Y., and Bacilio, M., 2011. Endophytic bacteria of Mammillaria fraileana, an endemic rock-colonizing cactus of the Southern Sonoran Desert. Archives of Microbiology 193: 527-541
    The definitive version is available electronically on SpringerLink: http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00203-011-0695-8

  40. de-Bashan, L.E., Schmid, M., Rothballer, M., Hartmann, A., and Bashan Y., 2011. Cell-cell interaction in the eukaryote-prokaryote model using the microalgae Chlorella vulgaris and the bacterium Azospirillum brasilense immobilized in polymer beads. Journal of Phycology 47:1350-1359

  41. Perez-Garcia, O., Escalante, F.M.E., de-Bashan L.E., and Bashan, Y. 2011. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research 45: 11-36. The definitive version is available at: http://www.elsevier.com

    2010

  42. de-Bashan, L.E., Hernandez, J.-P., Bashan, Y. and Maier, R. 2010. Bacillus pumilus ES4: Candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings. Environmental and Experimental Botany 69: 343–352

  43. Perez-Garcia, O., de-Bashan, L.E., Hernandez, J.-P., and Bashan, Y. 2010. Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. Journal of Phycology 46: 800–812

  44. de-Bashan, L.E., Hernandez, J.-P., Nelson, N. K., Bashan, Y. and Maier, R. 2010. Growth of Quailbush in Acidic, Metalliferous Desert Mine Tailings: Effect of Azospirillum brasilense Sp6 on Biomass Production and Rhizosphere Community Structure. Microbial Ecology 60: 915–927

  45. de-Bashan, L.E. and Bashan, Y. 2010. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology 101: 1611-1627

  46. Bashan, Y., and de-Bashan, L.E. 2010. How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Advances in Agronomy 108: 77-136

    2009

  47. Hernandez, J.-P., de-Bashan, L.E., Rodriguez, D. J., Rodriguez, Y. and Bashan, Y. 2009. Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. European Journal of Soil Biology 45: 88–93 Original version is available at: http://www.elsevier.com/locate/ejsobi

  48. Lopez, R.B., Bashan, Y., Bacilio M. and De la Cruz-Aguero, G. 2009. Rock-colonizing plants: abundance of the endemic cactus Mammillaria fraileana related to rock type in the southern Sonoran Desert. Plant Ecology 201: 575-588 The definitive version is available at: http://www.elsevier.com/plant ecology

  49. Puente, M.E., Li, C.Y. and Bashan, Y. 2009 Rock-degrading endophytic bacteria in cacti. Environmental and Experimental Botany 66: 389-401

  50. Puente, M.E., Li, C.Y. and Bashan, Y. 2009 Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environmental and Experimental Botany 66: 402-408

  51. Bashan, Y., Salazar, B., Puente, M. E., Bacilio, M., and Linderman, R.G. 2009. Enhanced establishment and growth of giant cardon cactus in an eroded field in the Sonoran Desert using native legume trees as nurse plants aided by plant growth-promoting microorganisms and compost. Biology and Fertility of Soils 45: 585-594 The definitive version is available at: http://www.springerlink.com

  52. Bashan, Y., Salazar, B., and Puente, M.E. 2009. Responses of native legume desert trees used for reforestation in the Sonoran Desert to plant growth-promoting microorganisms in screen house. Biology and Fertil Soils 45:655-662 The definitive version is available at: http://www.springerlink.com

  53. Hartmann A., and Bashan, Y. 2009. Ecology and application of Azospirillum and other plant growth-promoting bacteria (PGPB) - special issue. European Journal of Soil Biology 45: 1-2

    2008

  54. Strangmann, A., Bashan, Y. and Giani, L. 2008. Methane in pristine and impaired mangrove soils and its possible effect on establishment of mangrove seedlings. Biology and Fertility of Soils 44: 511–519.

  55. de-Bashan, L.E., Trejo, A., Huss, V.A.R., Hernandez, J.-P. Bashan, Y. 2008. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresource Technology 99: 4980-4989

  56. de-Bashan, L.E., Antoun, H., and Bashan Y. 2008. Involvement of indole-3-acetic-acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. Journal of Phycology 44: 938–947.

  57. Leyva L.A. and Bashan, Y. 2008. Activity of two catabolic enzymes of the phosphogluconate pathway in mesquite roots inoculated with Azospirillum brasilense Cd. Plant Physiology and Biochemistry 46 : 898-904

  58. de-Bashan, L.E., Magallon, P., Antoun, H., and Bashan Y. 2008. Role of glutamate dehydrogenase and glutamine synthetase in Chlorella vulgaris during assimilation of ammonium when jointly immobilized with the microalgae-growth-promoting bacterium Azospirillum brasilense. Journal of Phycology 44 : 1188–1196.

  59. de-Bashan, L.E., and Bashan Y. 2008. Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions. Applied and Environmental Microbiology 74: 6797–6802.

    2007

  60. Yabur, R., Bashan Y., Hernández-Carmona G. 2007. Alginate from the macroalgae Sargassum sinicola as a novel source for microbial immobilization material in wastewater treatment and plant growth promotion. Journal of Applied Phycology 19: 43-53.

  61. Bashan, Y., Khaosaad, T., Salazar, B.G., Ocampo, J. A. Wiemken, A. Oehl, F. and Vierheilig, H. 2007. Mycorrhizal characterization of the boojum tree, Fouquieria columnaris, an endemic ancient tree from the Baja California Peninsula, Mexico. Trees Structure and Function 21: 329-335

    2006

  62. Hernandez, J.-P., de-Bashan, L.E. and Bashan Y. 2006. Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme and Microbial Technology 38:190-198

  63. Gonzalez-Acosta, B., Bashan, Y., Hernandez-Saavedra, N.Y., Ascencio, F. and de la Cruz-Agüero, G. 2006. Seasonal seawater temperature as the major determination for populations of culturable bacteria in the sediments of an intact mangrove in an arid region. FEMS Microbiology Ecology 55: 311-321. (The definitive version is available at www.blackwell-synergy.com )

  64. Bashan, Y., Bustillos J. J., Leyva, L. A., Hernandez J.-P., and Bacilio M., 2006. Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biology and Fertility of Soils 42: 279–285

  65. Puente, M.E., Rodriguez-Jaramillo, M.C., Li, C.Y. and Bashan, Y. 2006. Image analysis for quantification of bacterial rock weathering.Journal of Microbiological Methods 64: 275-286

  66. Holguin, G., Gonzalez-Zamorano, P., de-Bashan, L.E., Mendoza, R., Amador, E., and Bashan, Y. 2006. Mangrove health in an arid environment encroached by urban development – a case study. Science of the Total Environment 363: 260-274

  67. Bashan, Y., Vierheilig, H., Salazar, B.G., and de-Bashan, L.E. 2006. Primary colonization and breakdown of igneous rocks by endemic, succulent elephant trees (Pachycormus Discolor) of the deserts in Baja California, Mexico.Naturwissenschaften 93: 344–347

  68. Rodriguez, H., Mendoza, A., Cruz, M.A., Holguin, G., Glick B.R., and Bashan, Y. 2006. Pleiotropic physiological effects in the plant growth-promoting bacterium Azospirillum brasilense following chromosomal labeling in the clpX gene. FEMS Microbiology Ecology 57: 217-225

  69. Bacilio M., Hernandez, J.-P., and Bashan, Y. 2006. Restoration of giant cardon cacti in barren desert soil amended with common compost and inoculated with Azospirillum brasilense. Biology and Fertility of Soils 43: 112-119.

  70. Rodriguez, H., Fraga, T. and Bashan, Y. 2006. Genetics of phosphate solubilization and potential applications for improving plant growth-promoting bacteria. Plant and Soil 287: 15 - 21.

    2005

  71. Bashan, Y. and de-Bashan, L.E. 2005. Fresh-weigth measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth: a critical examination. Soil Biology & Biochemistry 37: 1795-1804

  72. de-Bashan, L.E., Antoun H., and Bashan, Y. 2005. Cultivation factors and population size control uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting baterium Azospirillum brasilense. FEMS Microbiology Ecology 54: 197-203

  73. Bashan, Y., and de-Bashan, L.E. 2005. Bacteria/Plant growth-promotion. In: Encyclopedia of soils in the environment. (Ed.) D. Hillel, Elsevier, Oxford, U.K. 1:103-115

    2004

  74. de-Bashan L.E., Hernandez J.-P., Morey, T., and Bashan, Y. 2004. Microalgae growth-promoting bacteria as "helpers" for microalgae: a novel approach for removing ammonium and phosphorus for municipal wastewater. Water Research 38:466-474.

  75. Bacilio M., Rodriguez H., Moreno M., Hernandez J-P., and Bashan Y. 2004. Mitigation of salt stress in wheat seedlings by a gfp- tagged Azospirillum lipoferum. Biology and Fertility of Soil 40: 188-193.

  76. Puente, M.E., Bashan, Y., Li, C.Y., and Lebsky, V.K. 2004. Microbial populations and activities in the rhizoplane of rock-weathering desert plants, I. Root colonization and weathering of igneous rocks. Plant Biology 6: 629-642

  77. Puente, M.E., Li, C.Y., and Bashan, Y. 2004. Microbial populations and activities in the rhizoplane of rock-weathering desert plants, II. Growth promotion of cactus seedling. Plant Biology 6: 643-650

  78. Rodriguez, H., Gonzalez, T., Goire, I., and Bashan, Y. 2004. Gluconic acid production and phosphate solubilization by plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91: 552-555

  79. Bashan, Y., Holguin, G. and de-Bashan, L.E. 2004. Azospirillum-plant relationships: physiological, molecular, agricultural, and enviromental advances (1997 - 2003). Canadian Journal of Microbiology 50: 521 - 577

  80. de-Bashan, L.E. and Bashan, Y. 2004. Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997-2003). Water Research 38: 4222-4246

    2003

  81. Bacilio M., Vazquez P., and Bashan Y. 2003. Alleviation of noxious effects of cattle ranch composts on wheat seed germination by inoculation with Azospirillum spp. Biology and Fertility of Soils 38: 261-266.

  82. de-Bashan, L.E., and Bashan, Y. 2003. Bacterias promotoras de crecimiento de microalgas: una nueva aproximación en el tratamiento de aguas residuales (Microalgae growth-promoting bacteria: a novel approach in wastewater treatment). Revista Colombiana de Biotecnología 5: 85-90. (en español, Colombia).

    2002

  83. Bashan, Y., and de-Bashan, L.E. 2002. Protection of tomato seedlings against infection by Pseudomonas syringae pv tomato using the plant growth-promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology 68: 2637-2643.

  84. de-Bashan, L.E., Moreno, M., Hernandez, J.P., and Bashan, Y. 2002. Removal of ammonium and phosphorus ions from syntetic waste water by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Research 36: 2941-2948.

  85. Bashan, Y., Li, C.Y., Moreno, M., Lebsky, V.K. and de-Bashan, L.E. 2002. Primary colonization of volcanic rocks by plants in arid Baja California, Mexico. Plant Biology 4: 392-402.
  86. Valderrama, L.T., Del Campo, C.M., Rodriguez, C.M., de-Bashan, L.E., and Bashan, Y. 2002. Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalgae Chlorella vulgaris and the macrophyte Lemna minuscule. Water Research 36: 4185-4192

  87. Bashan, Y., Hernandez, J.P., Leyva, L.A. and Bacilio, M. 2002. Alginate microbeads as inoculant carrier for plant growth-promoting bacteria. Biology and Fertility of Soils 35: 359-368.

  88. de-Bashan, L.E., Bashan, Y., Moreno, M., Lebsky, V.K., and Bustillos,J.J. 2002. Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Canadian Journal of Microbiology 48: 514-521.

  89. Carrillo, A.E., Li, C.Y., and Bashan, Y. 2002. Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. Naturwissenschaften 89: 428-432.

  90. Bashan, Y. and de-Bashan, L.E. 2002. Reduction of bacterial speck(Pseudomonas syringae pv tomato) of tomato by combined treatments of plant growth-promoting bacterium, Azospirillum brasilense, streptomycin sulfate, and chemothermal seed treatment. European Journal of Plant Pathology 108: 821–829

  91. Bashan, Y., and Holguin, G. 2002. Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation. Trees: Structure and Function 16: 159-166.

    2001

  92. Lebsky, V.K., Gonzalez-Bashan, L.E., and Bashan, Y. 2001. Ultrastructure of coimmobilization of the microalga Chlorella vulgaris with the plant growth-promoting bacterium Azospirillum brasilense and with its natural associative bacterium Phyllobacterium myrsinacearum in alginate beads. Canadian Journal of Microbiology 47 : 1-8.

  93. Rojas, A., Holguin, G., Glick, B.R. and Bashan, Y. 2001. Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiology Ecology 35 :181-187

  94. Toledo, G., Rojas, A., and Bashan, Y. 2001. Monitoring of black mangrove restoration with nursery-reared seedlings on an arid coastal lagoon. Hydrobiología 444: 101-109.

  95. Holguin, G., Vazquez, P., and Bashan, Y. 2001. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of the mangrove ecosystems: an overview. Biology and Fertility of Soils 33: 265-278.

    2000

  96. Bashan,Y., Gonzalez, L.E., Toledo,G., Leon de La Luz, J.L.,Bethlenfalvay, G.J, Troyo, E., Rojas, A., Holguin,G., Puente, M.E.,Lebsky,V.K., Vazquez, P., Castellanos, T. and Glazier, E. 2000. A proposal for conservation of exemplary stands of the giant cardon cactus(Pachycereus pringlei [S. Wats Britt. & Ross]) in Baja California Sur, Mexico. Natural Areas Journal 20: 197-200.

  97. Bashan, Y., Davis, E. A., Carrillo-Garcia, A. and Linderman,R.G. 2000. Assessment of VA mycorrhizal inoculum potential in relation to the establishment of cactus seedlings under mesquite nurse-trees in the Sonoran desert. Applied Soil Ecology 14 : 165-176.

  98. Gonzalez, L.E., and Bashan, Y. 2000. Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant growth-promoting bacterium Azospirillum brasilense . Applied and Environmental Microbiology. 66: 1527-1531.

  99. Carrillo-Garcia, A., Bashan, Y. and Bethlenfalvay, G.J.2000. Resource-island soils and the survival of the giant cactus, cardon, of Baja California Sur. Plant and Soil 218: 207-214.

  100. Carrillo-Gracia, A., Bashan, Y., Diaz-Rivera, E., and Bethlenfalvay,G.J. 2000. Effects of resource - island soils, competition, and inoculation with Azospirillum on survival and growth of Pachycereus pringlei , the giant cactus of the Sonoran Desert. Restoration Ecology 8 : 65-73.

  101. Bashan, Y. and Vazquez, P. 2000. Effect of calcium carbonate, sand, and organic matter levels on mortality of five species of Azospirillum in natural and artificial bulk soils. Biology and Fertility of Soils 30: 450-459.

  102. Vazquez, P., Holguin, G., Puente, M.E., Lopez-Cortes, A. and Bashan, Y. 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils 30 : 460-468.

  103. Castellanos, T., Ascencio, F. and Bashan, Y. 2000. Starvation-induced changes in the cell surface of Azospirillum lipoferum. FEMS Microbiology Ecology 33 :1-9.

  104. Gonzalez-Bashan, L.E., Lebsky, V.K., Hernandez, J.P., Bustillos, J.J. and Bashan, Y. 2000. Change in the metabolism of the microalga Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum . Canadian Journal of Microbiology 46: 653-659.

  105. Bashan, Y., Moreno, M., and Troyo, E. 2000. Growth promotionof the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biology and Fertility of Soils 32: 265-272.

    1999

  106. Holguin, G., Bashan, Y., Mendoza-Salgado, R.A., Amador, E., Toledo, G. Vazquez, P. and Amador, A. 1999. Microbiology of mangroves, forests in the frontier between land and sea. Ciencia y Desarrollo 25: 26-35

  107. Puente, M.E., Holguin, G., Glick, B.R. and Bashan, Y. 1999.Root-surface colonization of black mangrove seedlings by Azospirillum halofraeferens and Azospirillum brasilense in seawater. FEMS Microbiology Ecology 29:283-292.

  108. Bashan, Y. and Gonzalez, L.E. 1999. Long-term survival of the plant-growth-promoting bacteria Azospirillum brasilense and Pseudomonas fluorescens in dry alginate inoculant. Applied Microbiology and Biotechnology 51 : 262-266.

  109. Bashan, Y. Rojas, A. and Puente, M.E. 1999. Improved establishment and development of three cacti species inoculated with Azospirillum brasilense transplanted into disturbed urban desert soil. Canadian Journal of Microbiology 45: 441-451.

  110. Carrillo-Garcia, A., Leon de la Luz, J.-L., Bashan, Y. and Bethlenfalvay, G.J. 1999. Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran desert. Restoration Ecology 7: 321-335.

  111. Bashan, Y. 1999. Interactions of Azospirillum spp. in soils: a review. Biology and Fertility of Soils 29: 246-256.

    1998

  112. Bashan, Y. 1998. Azospirillum plant growth-promoting strains are non pathogenic on tomato, pepper, cotton, and wheat. Canadian Journal of Microbiology 44: 168-174.

  113. Bashan, Y., Puente, M.E., Myrold, D.D. and Toledo, G. 1998. In vitro transfer of fixed nitrogen from diazotrophic filamentous cyanobacteria to black mangrove seedlings. FEMS Microbiology Ecology 26 :165-170.

  114. Castellanos, T., Ascencio, F. and Bashan, Y. 1998. Cell-surface lectins of Azospirillum spp. Current Microbiology 36: 241-244.

  115. Bashan, Y., and Holguin, G. 1998. Proposal for the division of Plant Growth-Promoting Rhizobacteria into two classifications: biocontrol-PGPB (Plant Growth-Promoting Bacteria) and PGPB. Soil Biology and Biochemistry 30: 1225-1228.

  116. Bashan, Y. 1998. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances 16: 729-770.

    1997

  117. Castellanos, T., Ascencio, F. and Bashan, Y. 1997. Cell-surface hydrophobicity and cell-surface charge of Azospirillum spp. FEMS Microbiology Ecology 24: 159-172.

  118. Bashan, Y. and Holguin, G. 1997. Azospirillum -plant relationships: environmental and physiological advances (1990-1996). Canadian Journal of Microbiology 43: 103-121.

  119. Glick, B.R., and Bashan, Y. 1997. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances 15: 353-378.

    1996

  120. Carrillo, A., Puente, M.E. and Bashan, Y. 1996. Application of diluted chlorine dioxide to radish and lettuce nurseries insignificantly reduced plant development. Ecotoxicology and Environmental Safety 35:57-66.

  121. Giani, L., Bashan, Y., Holguin, G. and Strangmann, A. 1996.Characteristics and methanogenesis of the Balandra lagoon mangrove soils,Baja California Sur, Mexico. Geoderma 72: 149-160.

  122. Bashan, Y. and Dubrovsky, J.G. 1996. Azospirillum spp. participation in dry matter partitioning in grasses at the whole plant level. Biology and Fertility of Soils 23: 435-440.

  123. Holguin, G. and Bashan, Y. 1996. Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.) Soil Biology and Biochemistry 28: 1651-1660.

  124. Bashan, Y., Holguin, G. and Ferrera-Cerato, R. 1996. Interactions between plants and beneficial microorganism: I. Azospirillum. Terra 14 :159-194.(in Spanish)

  125. Bashan, Y., Holguin, G. and Ferrera-Cerato, R. 1996. Interactions between plants and beneficial microorganism: II. Associative rhizosphere bacteria. Terra 14 : 195-210. (in Spanish)

  126. Holguin, G., Bashan, Y. and Ferrera-Cerato, R. 1996. Interactions between plants and beneficial microorganism: III. Methodsfor isolation and characterization of mycorrhizal fungi and plant growth-promoting microorganisms.Terra 14: 211-227. (in Spanish)

    1995

  127. Bashan, Y., Puente, M.E., Rodriguez-Mendoza, M.N., Toledo, G., Holguin, G., Ferrera-Cerrato, R. and Pedrin, S. 1995. Survival of Azospirillum brasilense in the bulk soil and rhizosphere of 23 soil types. Applied and Environmental Microbiology 61 : 1938-1945.

  128. Bashan, Y., Toledo, G. and Holguin, G. 1995. Flat top decay syndrome of the giant cardon cactus (Pachycereus pringlei): description and distribution in Baja California Sur,Mexico. Canadian Journal of Botany 73:683-692.

  129. Bashan, Y. and Holguin, G. 1995. Inter-root movement of Azospirillum brasilense and subsequent root colonization of crop and weed seedlings growing in soil. Microbial Ecology 29: 269-281.

  130. Toledo, G., Bashan, Y. and Soeldner, A. 1995. Cyanobacteria and black mangroves in Northwestern Mexico: colonization, and diurnal and seasonal nitrogen fixation on aerial roots. Canadian Journal of Microbiology 41: 999-1011.

  131. Toledo, G., Bashan, Y. and Soeldner, A. 1995. In vitro colonization and increase in nitrogen fixation of seedling roots of black mangrove inoculated by a filamentous cyanobacteria. Canadian Journal of Microbiology 41: 1012-1020.

    1994

  132. Alcaraz-Melendez, L., Real-Cosio, S. and Bashan, Y. 1994. Domestication of micropropagated plants of the spice damiana (Turnera diffusa). Plant Cell Reports 13: 679-683.

  133. Puente, M.-E. and Bashan, Y. 1994. The desert epiphyte Tillandsia recurvata harbors the nitrogen-fixingbacterium Pseudomonas stutzeri. Canadian Journal of Botany 72: 406-408.

  134. Bashan, Y. and Holguin, G. 1994. Root-to-root travel of the beneficial bacterium Azospirillum brasilense. Applied and Environmental Microbiology 60:2120-2131.

  135. Bashan, Y. 1994. Symptom expression and ethylene production in leaf blight of cotton caused by Alternaria macrospora and Alternaria alternata alone and in combination. Canadian Journal of Botany 72: 1574-1579.

  136. Bashan, Y. 1994. Symptomless infections in Alternaria leaf blight of cotton. Canadian Journal of Botany 72:1580-1585.

  137. Dubrovsky, J.G., Puente, M.E. and Bashan, Y. 1994. Arabidopsis thaliana as a model system for the study of the effect of inoculation by Azospirillum brasilense Sp-245 on root hair growth. Soil Biology and Biochemistry 26:1657-1664.

    1993

  138. Holguin, G., Bowers, R. and Bashan, Y. 1993. The degeneration of Cardon populations in Baja California Sur, Mexico. Cactus and Succulent Journal, 65 : 64-67.

  139. Puente, M.-E. and Bashan, Y. 1993. Effect of inoculation with Azospirillum brasilense strains on the germination and seedlings growth of the giant columnar Cardon cactus (Pachycereus pringlei). Symbiosis 15: 49-60.

  140. Bashan, Y. and Holguin, G. 1993. Anchoring of Azospirillum brasilense to hydrophobic polystyrene and wheat roots. Journal of General Microbiology 139: 379-385.

  141. Bashan, Y. 1993. Potential use of Azospirillum use of biofertilizer. Turrialba 43: 286-291.

    1992

  142. Holguin, G. and Bashan, Y. 1992. Increased aggressiveness of Alternaria macrospora, a causal agent of leaf blight in cotton monoculture. Canadian Journal of Botany 70: 1878-1884.

  143. Holguin, G., Guzman, M.A. and Bashan, Y. 1992. Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees, isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbiology Ecology 101:207-216.

  144. Puente, M.E., Vega-Villasante, F. Holguin, G. and Bashan, Y. 1992. Susceptibility of the brine shrimp Artemia and its pathogen Vibrio parahaemolyticus to chlorine dioxide in contaminated seawater. Journal of Applied Bacteriology 73: 465-471.

  145. Bashan, Y., Alcaraz-Melendez, L. and Toledo, G. 1992. Responses of soybean and cowpea root membranes to inoculation with Azospirillum brasilense . Symbiosis 13: 217-228.

    1991

  146. Bashan, Y., Levanony, H. and Whitmoyer, R.E. 1991. Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense Cd. Journa of General Microbiology.137: 187-196.

  147. Bashan, Y., Mitiku, G., Whitmoyer, R.E. and Levanony, H. 1991. Evidence that fibrillar anchoring is essential for Azospirillum brasilense Cd attachment to sand. Plant and Soil 132: 73-83.

  148. Bashan, Y., Mitiku, G., Ziv-Vecht, O. and Levanony, H. 1991. Estimation of minimal numbers of Azospirillum brasilense using time-limited liquid enrichment combined with enzyme-linked immunosorbent assay. Soil Biology and Biochemistry 23: 135-138.

  149. Bashan, Y. and Levanony, H. 1991. Alterations in membrane potential and in proton efflux in plant roots induced by Azospirillum brasilense . Plant and Soil 137: 99-103.

  150. Bashan, Y., Levanony, H. and Or, R. 1991. Wind dispersal of Alternaria alternata, a cause of leaf blight of cotton. Journal of Phytopathology 133: 225-238.

  151. Bashan, Y., Levanony, H. and Or, R. 1991. Association between Alternaria macrospora and Alternaria alternata,causal agents of cotton leaf blight. Canadian Journal of Botany 69: 2603-2607.

  152. Bashan, Y., Levanony, H. and Or, R. 1991. Wild beets as an important inoculum source of Alternaria alternata, acause of leaf blight of cotton in Israel. Canadian Journal of Botany 69: 2608-2615.

  153. Levanony, H. and Bashan, Y. 1991. Active attachment of Azospirillum brasilense to root surface of non-cerealplants and to sand particles. Plant and Soil 137: 91-97.

  154. Bashan, Y. 1991. Air-borne transmission of the rhizosphere bacterium Azospirillum. Microbial Ecology 22 : 257-269.

  155. Bashan, Y. 1991. Changes in membrane potential of intact soybean root elongation zone cells induced by Azospirillum brasilense . Canadian Journal of Microbiology 37: 958-963.

    1990

  156. Levanony, H. and Bashan, Y. 1990 . Avidin-biotin complex incorporation into enzyme-linked immunosorbent assay (ABELISA) for improving the detection of Azospirillum brasilense Cd. Current Microbiology 20 : 91-94.

  157. Bashan, Y., Harrison, S.K. and Whitmoyer, R.E. 1990. Enhanced growth of wheat and soybean plants inoculated with Azospirillum brasilense is not necessarily due to general enhancement of mineral uptake. Applied and Environmental Microbiology 56: 769-775.

  158. Bashan, Y. 1990. Short exposure to Azospirillum brasilense Cd inoculation enhanced proton efflux in intact wheat roots. Canadian Journal of Microbiology 36 :419-425.

  159. Bashan, Y. and Levanony, H. 1990. Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Canadian Journal of Microbiology 36: 591-608.

    1989

  160. Levanony, H. and Bashan, Y. 1989. Localization of specific antigens of Azospirillum brasilense Cd in its exopolysaccharide by immuno-gold staining. Current Microbiology 18: 145-149.

  161. Bashan, Y., Ream, Y., Levanony, H. and Sade, A. 1989. Nonspecific responses in plant growth, yield, and root colonization of noncereal crop plants to inoculation with Azospirillum brasilense Cd. Canadian Journal of Botany 67: 1317-1324.

  162. Levanony, H. and Bashan, Y. 1989. Enhancement of cell division in wheat root tips and growth of root elongation zone induced by Azospirillum brasilense Cd. Canadian journal of Botany 67: 2213-2216.

  163. Levanony, H., Bashan, Y., Romano, B. and Klein, E. 1989. Ultrastructural localization and identification of Azospirillum brasilense Cd on and within wheat root by immuno-gold labeling. Plant and Soil 117: 207-218.

  164. Bashan, Y., Singh, M. and Levanony, H. 1989. Contribution of Azospirillum brasilense Cd to growth of tomato seedlings is not through nitrogen fixation. Canadian Journal of Botany 67: 2429-2434.

  165. Bashan, H. and Levanony, H. 1989. Effect of root environment on proton efflux in wheat roots. Plant and Soil 119: 191-197.

  166. Bashan, Y., Levanony, H. and Mitiku, G. 1989. Changes in proton efflux of intact wheat roots induced by Azospirillum brasilense Cd. Canadian Journal of Microbiology 35: 691-697.

  167. Bashan, Y. and Levanony, H. 1989. Wheat root tips as a vector for passive vertical transfer ofAzospirillum brasilense Cd. Journal of General Microbiology 135: 2899-2908.

  168. Bashan, Y. and Levanony, H. 1989. Factors affecting adsorption of Azospirillum brasilense Cd to root hairs as compared with root surface of wheat. Canadian Journal of Microbiology 35: 936-944.

    1988

  169. Bashan, Y. and Levanony, H. 1988. Adsorption of the rhizosphere bacterium Azospirillum brasilense Cd to soil, sand and peat particles. Journal of General Microbiology 134: 1811-1820.

  170. Bashan, Y. and Levanony, H. 1988. Active attachment of Azospirillum brasilense Cd to quartz sand and to light-textured soil by protein bridging. Journal of General Microbiology 134: 2269-2279.

    1987

  171. Levanony, H., Bashan, Y. and Kahana, Z.E. 1987. Enzyme-linked immunosorbent assay for specific identification and enumeration of Azospirillum brasilense Cd. in cereal roots. Applied and Environmental Microbiology 53:358-364

  172. Bashan, Y., Levanony, H. and Ziv-Vecht, O. 1987. The fate of field-inoculated Azospirillum brasilense Cd. in wheat rhizosphere during the growing season. Canadian Journal of Microbiology 33:1074-1079

  173. Bashan, Y. and Wolowelsky, J. 1987. Soil samplers for quantifying microorganisms. Soil Science 143: 132-138.

  174. Bashan, Y., Okon, Y. and Henis, Y. 1987. Peroxidase, polyphenoloxidase, and phenols in relation to resistance against Pseudomonas syringae pv. tomato in tomato plants. Canadian Journal of Botany 65: 366-372.

  175. Bashan, Y. and Levanony, H. 1987. Transfer of Alternaria macrospora from cotton seed to seedling: light and scanning electron microscopy of colonization. Journal of Phytopathology 120: 60-68.

  176. Bashan, Y. and Levanony, H. 1987. Horizontal and vertical movement of Azospirillum brasilense Cd. in the soil and along the rhizosphere of wheat and weeds in controlled and field environments. Journal of General Microbiology 133: 3473-3480.

  177. Bashan, Y. 1987. Mechanisms of symptom production by foliar bacterial pathogens. Phytoparasitica 15: 197-223.

    1986

  178. Bashan, Y. and Okon, Y. 1986. Internal and external infections of fruits and seeds of peppers caused by Xanthomonas campestris pv. vesicatoria. Canadian Journal of Botany 64: 2865-2871.

  179. Bashan, Y. 1986. Significance of timing and level of inoculation with rhizosphere bacteria on wheat plants. Soil Biology and Biochemistry 18: 297-301.

  180. Bashan, Y., Okon, Y. and Henis, Y. 1986. A possible role for proteases and deaminases in the development of the symptoms of bacterial speck disease in tomato caused by Pseudomonas syringae pv. tomato. Physiological and Molecular Plant Pathology 28: 15-31.

  181. Bashan, Y. 1986. Alginate beads as synthetic inoculant carriers for the slow release of bacteria that affect plant growth.Applied and Environmental Microbiology 51: 1089-1098.

  182. Bashan, Y. 1986. Field dispersal of Pseudomonas syringae pv. tomato, Xanthomonas campestris pv. vesicatoria and Alternaria macrospora by animals, people, birds, insects, mites, agricultural tools, aircraft, soil particles and water sources.Canadian Journal of Botany 64:276-281.

  183. Bashan, Y. 1986. Phenols in cotton seedlings resistant and susceptible to Alternaria macrospora. Journal of Phytopathology 116: 1-10.

  184. Bashan, Y. 1986. Inhibition of seed germination and root development caused by Xanthomonas campestris pv. vesicatoria in pepper and tomato. Journal of Phytopathology 116: 228-237.

  185. Ben-David, A., Bashan, Y. and Okon, Y. 1986. Ethylene production in pepper (Capsicum annuum) leaves infected with Xanthomonas campestris pv. vesicatoria. Physiological and Molecular Plant Pathology 29: 306-316.

  186. Bashan, Y. and Okon, Y. 1986. Diseased leaf lyophilization: a method for long-term prevention of loss of virulence in phytopathogenic bacteria. Journal of Applied Bacteriology 61:163-168.

  187. Bashan, Y., Levanony, H. and Klein, E. 1986. Evidence for a weak active external adsorption of Azospirillum brasilense Cd to wheat roots. Journal of General Microbiology 132: 3069-3073.

  188. Bashan, Y. 1986. Migration of the rhizosphere bacteria Azospirillum brasilense and Pseudomonas fluorescens towards wheat roots in the soil. Journal of General Microbiology 132: 3407-3414.

  189. Bashan, Y. 1986. Enhancement of wheat roots colonization and plant development by Azospirillum brasilense Cd. following temporary depression of the rhizosphere microflora. Applied and Environmental Microbiology 51: 1067-1071.

    1985

  190. Bashan, Y., Okon, Y. and Henis, Y. 1985. Detection of cutinases and pectic enzymes during infection of tomato by Pseudomonas syringae pv. tomato. Phytopathology 75: 940-945.

  191. Bashan, Y., Okon, Y. and Henis, Y. 1985. Morphology of leaf surfaces of tomato cultivars in relation to possible invasion into the leaf by Pseudomonas syringae pv. tomato. Annals of Botany 55: 803-809.

  192. Bashan, Y. and Levanony, H. 1985. An improved selection technique and medium for the isolation and enumeration of Azospirillum brasilense. Canadian Journal of Microbiology 31: 947-952.

  193. Bashan, Y., Azaizeh, M., Diab, S., Yunis, H. and Okon, Y. 1985. Crop loss of pepper plants artificially infected with Xanthomonas campestris pv. vesicatoria in relation to symptom expression. Crop Protection 4: 77-84.

    1984

  194. Bashan, Y. and Lifshitz, R. 1984. Foxing in stamps: long-term effects of sterilization and treatment with NaCl. Systematic and Applied Microbiology 5: 564-569

  195. Fallik, E., Bashan, Y., Okon, Y. and Kedar, N. 1984. Genetics of resistance to bacterial speck of tomato caused by Pseudomonas syringae pv. tomato. Annals of Applied Biology 104: 321-325.

  196. Soroker, E., Bashan, Y. and Okon, Y. 1984. Reproducible induction of cavity spot in carrots and physiological and microbial changes occurring during cavity formation. Soil Biology and Biochemistry 16: 541-548.

  197. Bashan, Y. 1984. Transmission of Alternaria macrospora in cotton seeds. Phytopathologische Zeitschrift 110: 110-118.

  198. Azaizeh, M. and Bashan, Y. 1984. Chemical control of Xanthomonas campestris pv. vesicatoria in inoculated pepper fields in Israel. Tests of Agrochemicals and Cultivars. (Annals of Applied Biology 104; Supplement) 5: 60-61.

  199. Bashan, Y., Azaizeh, M. and Diab, S. 1984. Response of several pepper cultivars to inoculation with Xanthomonas Campestris pv. vesicatoria. Tests of Agrochemicals and Cultivars (Annals of Applied Biology 104; Supplement) 5: 120-121.

    1983

  200. Bashan, Y. and Assouline, I. 1983 Complementary bacterial enrichment techniques for the detection of Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria in infested tomato and pepper seeds. Phytoparasitica 11: 187-193

  201. Bashan, Y. and Assouline, I. 1983 The occurrence of bacterial blight of peas in Israel. Phytoparasitica 11: 113-115

  202. Fallik, E., Bashan, Y., Okon, Y., Cahaner, A. and Kedar, N. 1983. Inheritance and sources of resistance to bacterial speck of tomato caused by Pseudomonas syringae pv. tomato. Annals of Applied Biology 102: 365-371.

    1982

  203. Bashan, Y., Okon, Y. and Henis, Y. 1982. Detection of a necrosis-inducing factor of nonhost plant leaves produced by Pseudomonas syringae pv. tomato. Canadian Journal of Botany 60: 2453-2460

  204. Diab, S., Bashan, Y. and Okon, Y. 1982. Studies of infection with Xanthomonas campestris pv. vesicatoria, causal agent of baterial scab of pepper in Israel. Phytoparasitica 10: 183-191.

  205. Diab, S., Bashan, Y., Okon, Y. and Henis, Y. 1982. Effect of relative humidity on bacterial scab caused by Xanthomonas campestris pv. vesicatoria on pepper. Phytopathology 72: 1257-1260.

  206. Bashan, Y., Okon, Y. and Henis, Y. 1982. Long-term survival of Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria in tomato and pepper seeds. Phytopathology 72: 1143-1144.

  207. Sharon, E., Bashan, Y., Okon, Y. and Henis, Y. 1982. Presymptomatic multiplication of Xanthomonas campestris pv. vesicatoria on the surface of pepper leaves. Canadian Journal of Botany 60: 1041-1045.

  208. Bashan, Y., Okon, Y. and Henis, Y. 1982. A note on a new defined medium for 'Pseudomonas tomato'. Journal of Applied Bacteriology 52: 297-298.

  209. Sharon, E., Okon, Y., Bashan, Y. and Henis, Y. 1982. Detached leaf enrichment: a method for detecting small numbers of Pseudomonas syringae pv. tomato and Xanthomonas campestris pv. vesicatoria in seeds and symptomless leaves of tomato and pepper. Journal of Applied Bacteriology 53: 371-377.

  210. Bashan, Y., Diab, S. and Okon, Y. 1982. Survival of Xanthomonas campestris pv. vesicatoria in pepper seeds in symptomless and dry leaves and in soil. Plant and Soil 68:161-170.

    1981

  211. Bashan, Y., Sharon, E., Okon, Y. and Henis, Y. 1981. Scanning electron and light microscopy of infection and symptom development in tomato leaves infected with Pseudomonas tomato. Physiological Plant Pathology 19: 139-144.

  212. Bashan, Y., Kritzman, G., Sharon, E., Okon, Y. and Henis, Y. 1981. A note on the detection of phytopathogenic bacteria within the leaf by differential staining procedure. Journal of Applied Bacteriology 50: 315-317.

  213. Bashan, Y. and Okon, Y. 1981. Inhibition of seed germination and development of tomato plants in soil infested with Pseudomonas tomato. Annals of Applied Biology 98: 413-417.

  214. Bashan, Y. and Okon, Y. 1981. Integrated control of bacterial blotch in Israel. Mushroom Journal 97: 29-33.

  215. Platt, M., Bashan, Y., Chet, I. and Henis, Y. 1981. Two simple media for rapid growth of Pleurotus species. Mushroom Newsletters for the Tropics 1: 2-8.

    1980

  216. Bashan, Y., Okon, Y. and Henis, Y. 1980. Ammonia causes necrosis in tomato leaves infected with Pseudomonas tomato (Okabe) Alstatt. Physiological Plant Pathology 17: 111-119.

  217. Yunis, H., Bashan, Y., Okon, Y. and Henis, Y. 1980. Weather dependence, yield losses and control of bacterial speck of tomato caused by Pseudomonas tomato. Plant Disease 64: 937-939.

  218. Bashan, Y. and Platt, M. 1980. Increased yield of the cultivated mushroom in Israel by artificial misting. HortScience 15: 263-264.

  219. Yunis, H., Bashan, Y., Okon, Y. and Henis, Y. 1980. Two sources of resistance to bacterial speck of tomato caused by Pseudomonas tomato. Plant Disease 64: 851-852

    1978

  220. Bashan, Y., Okon, Y. and Henis, Y. 1978. Infection studies of Pseudomonas tomato, causal agent of bacterial speck of tomato. Phytoparasitica 6: 135-145.
1 2 3 4 next

home page section's menu